
On Following Pareto-Optimal Policies in
Multi-Objective Planning and Reinforcement Learning

Diederik M. Roijers
Vrije Universiteit Brussel

Brussels, Belgium &
HU Univ. of Applied Sciences Utrecht

Utrecht, the Netherlands
diederik.roijers@vub.be

Willem Röpke
Vrije Universiteit Brussel

Brussels, Belgium
willem.ropke@vub.be

Ann Nowé
Vrije Universiteit Brussel

Brussels, Belgium
ann.nowe@vub.be

Roxana Rădulescu
Vrije Universiteit Brussel

Brussels, Belgium
roxana.radulescu@vub.be

ABSTRACT
Multi-objective sequential decision problems have been studied
in the literature for a long time. White (1982) already proposed
a value iteration algorithm for computing Pareto Coverage Sets
(PCS), i.e., Pareto fronts, in infinite-horizon multi-objective Markov
decision processes (MOMDPs). Likewise, reinforcement learning
algorithms have been proposed to learn these PCSs. However, many
papers stop after showing that the value vectors in the PCSs can be
computed, and do not go into executing the policies that constitute
these value vectors. In this paper, we show that when the transition
function is stochastic, selecting a value vector and executing the
corresponding policy (without explicitly representing it) leads to a
combinatorial optimisation problem at each action selection step.
We evaluate the consequences of this by performing a heuristic
search algorithm to retrieve and execute the policy. Furthermore, we
propose a method to train a policy in the form of a neural network
at planning or learning time, and compare this to the heuristic
optimisation approach for executing policies.

KEYWORDS
Policy execution, Multiple objectives, MOMDPs

1 INTRODUCTION
Many real-world decision problems have more than one objective
[2]. In fact, multiple objectives is often a large component in why
people perceive such decision problems as difficult [1]. In artificial
intelligencewe therefore need to be able incorporate such objectives
in our models.

Much research in artificial intelligence (AI) focuses on simplified
models in which all of a decision problem’s objectives are forced
into a single reward function. For some applications this may be fine,
as such modelling may well lead to an acceptable agent behaviour.
However, explicitly using multi-objective models, solutions and
policies does make the decisions regarding trade-offs between the
objectives explicit, and therefore can empower the human users of
AI by enabling them to take well-informed decisions about these
trade-offs [2]. This becomes especially important when the AI has

Proc. of the 1st Multi-Objective Decision Making Workshop (MODeM 2021), Hayes, Man-
nion, Vamplew (eds.), July 14-16, 2021, Online, http://modem2021.cs.nuigalway.ie. 2021.

a serious potential to impact human lives, as it is then essential
to align the AI’s policies with human preferences regarding the
objectives in the decision problem [17].

In multi-objective planning and reinforcement learning (RL) [15],
multiple objectives are incorporated by using vector-valued reward
functions [10]. A key model in multi-objective planning and RL is
the multi-objective Markov decision process (MOMDP). In planning
this model has been studied as early as the late 1970s / early 1980’s
[4, 19]. In 1982, White [18] proposed a value iteration algorithm to
compute Pareto coverage sets (PVI) and proved that this converges
to the correct values. Much more recently, Van Moffaert and Nowé
[6] proposed the Pareto Q-Learning algorithm (PQL) that does the
same for RL settings.

PVI and PQL are able to plan or learn correct Pareto cover-
age sets (PCSs). This means that they are able to output the set
of (close-approximately correct) attainable value vectors that are
Pareto-undominated, thereby covering all possible monotonically
increasing utility functions that a user might have to make trade-
offs between value vectors. Such a PCS is thus a sufficient solution
set for all multi-objective settings [13].

One might well think that PVI and PQL are therefore ready for
real-world usage. However, as this paper will show, wemay run into
issues when the policies actually need to be executed. Specifically,
when the transition function of the MOMDP is stochastic, executing
the policy implies solving a combinatorial optimisation problem at
each action selection step. This stands in contrast to deterministic-
transition-function MOMDPs, for which Van Moffaert and Nowé
[6] show that following the policy associated with a given value
vector can be performed by keeping an estimate of the immediate
expected reward function (separate from the long-term returns),
and doing some simple calculations at each action selection step.

After showing that Pareto-optimal policy (POP) following leads
to combinatorial optimisation problems at each timestep, we inves-
tigate two ways of performing this task. Firstly, we solve the POP
following problem by calling a heuristic optimisation algorithm –
iterated local search – at each action selection, and investigate how
the quality of the policy executions changes as a function of the
time invested at each action-selection step. Secondly, as we actually
know how each value vector was generated from a combination of
actions for possible states during planning or learning, we observe

http://modem2021.cs.nuigalway.ie

that this generates data that we can use to train a neural network for
POP following. We investigate how such a POP network compares
to the heuristic optimisation approach.

MODeM positioning
As the shape and size of optimal solution inmulti-objective decision-
making depends on the setting in which it is used and what is
known about the utility function of the user(s) and allowed policies
[2, 12], we would like to take a paragraph positioning this paper
with respect to this field. We envision a multi-policy scenario (e.g.,
unknown weights or decision support) [12], where the policies are
allowed to be non-stationary, but are forced to be deterministic (sim-
ilar to [6] and [18]). We must note though that our non-stationary
policies do not explicitly condition on time, but rather on the vector
that is being followed, and the visited states. This results in policies
that are, in practice, conditioned on the state-history.

2 THE MULTI-OBJECTIVE MDP MODEL
As a mathematical framework for modeling multi-objective deci-
sion making settings we use the Multi-Objective Markov Decision
Process (MOMDP). A MOMDP is a tuple 𝑀 = (𝑆,𝐴,𝑇 ,𝛾,R), with
𝑑 ≥ 2 objectives, where:
• 𝑆 is the state space
• 𝐴 is the set of actions
• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is the probabilistic transition function
• 𝛾 is the discount factor
• R : 𝑆 ×𝐴 × 𝑆 → R𝑑 is the vectorial reward function for each
of the 𝑑 objectives

An agent behaves according to a policy 𝜋 : 𝑆 × 𝐴 → [0, 1],
meaning that given a state, actions are selected according to a
certain probability distribution. The user’s utility is derived from
the vector-valued returns, i.e.,

∞∑
𝑡=0

𝛾𝑡 r𝑡 ,

the sum of discounted rewards accrued during policy execution,
where r𝑡 is the received vectorial reward obtained by the agent for
performing action 𝑎𝑡 ∈ 𝐴, at state 𝑠𝑡 ∈ 𝑆 and transitioning to state
𝑠𝑡+1 ∈ 𝑆 . Please note that we also use R(𝑠, 𝑎), which is the expected
immediate reward for performing an action 𝑎 in a state 𝑠 .

The utility is typically modelled as a utility function that needs
to be applied to the return vectors. For this, there are two choices
[12]: to calculate the expected value of the return of a policy before
applying the utility function leads to the scalarised expected returns
(SER) optimisation criterion:

𝑉 𝜋
𝑢 = 𝑢

(
E

[∞∑
𝑡=0

𝛾𝑡 r𝑡 | 𝜋, 𝜇0

])
, (1)

where 𝜇0 is the distribution over initial states 𝑠0 ∈ 𝑆 . SER is the
most commonly used criterion in the multi-objective (single agent)
planning and reinforcement learning literature [12]. The alternative,
i.e., applying the utility function before computing the expectation,
leads to the expected scalarised returns (ESR):

𝑉 𝜋
𝑢 = E

[
𝑢

(∞∑
𝑡=0

𝛾𝑡 r𝑡

)
| 𝜋, 𝜇0

]
. (2)

MOMDP algorithm solution
set

planning or learning phase

user
selection

selection phase

single
solution

execution phase

Figure 1: The unknown utility function scenario [12]

ESR is amore commonly used criterion in the game theory literature
on multi-objective games [14].

In this paper, we focus on the SER optimality criterion; the more
common criterion in themulti-objective reinforcement learning and
multi-objective decision-theoretic planning literature. Under SER,
optimising 𝜋 is equivalent to maximising the expected discounted
long-term reward with respect to the utility:

𝑉 𝜋
𝑢 = 𝑢 (V𝜋) = 𝑢

(
E

[∞∑
𝑡=0

𝛾𝑡 r𝑡 | 𝜋, 𝜇0

])
, (3)

where 𝜇0 is the distribution over initial states 𝑠0, 𝛾 is the discount
factor and r𝑡 the vectorial reward obtained by the agent for per-
forming action 𝑎𝑡 ∈ 𝐴, at state 𝑠𝑡 ∈ 𝑆 and transitioning to state
𝑠𝑡+1 ∈ 𝑆 .

The policy value vectors, V𝜋 , lead to a partial ordering over
policies. If the utility function is known, we may be able to optimise
a single policy. However, if no further information about the utility
function, 𝑢, of the user is available other than the fact that it is
monotonically increasing in all objectives [12], and the policies are
required to be deterministic, the optimal solution set becomes the
set of all policy value vectors that are not Pareto dominated, i.e.,
the Pareto Coverage Set1:

𝑃𝐶𝑆 = {V𝜋 , 𝜋 ∈ Π | �𝜋 ′ ∈ Π : V𝜋
′
≻𝑃 V𝜋 }, (4)

In other words, for each policy in the Pareto Coverage Set, there
exists no other policy with a value that is equal or better in all
objectives and better in at least one objective. We note that in this
work we restrict the set of all possible policies, Π, to deterministic,
but possibly non-stationary policies, following the setting of [6]
and [18].

Algorithms like Pareto value iteration (PVI) [18] and Pareto Q-
Learning (PQL) [6] approximate the value vectors that constitute the
PCS. However they do not explicitly learn the policy that constitute
these vectors. Therefore the actual policies that belong to these
value vectors need to be induced from the available information.
This is not straightforward as in the single-objective case, as we
will show in the next Section.

3 THE POP FOLLOWING PROBLEM
The Pareto-optimal Policy following problem arises from the fol-
lowing task: after a PCS inducing algorithm – like PVI or PQL –
has outputted an approximate PCS in terms of value vectors (Equa-
tion 3), value vectors are shown to a user [23] to select which policy
the user prefers, in the selection phase [2, 12]. Then, in the execu-
tion phase a policy that leads to this value vector, V𝑢 , needs to be
executed. For an overview of this process see Figure 1.

After PVI or PQL terminates, the following information can and
should be retained for policy execution:
1Following [12], we use the term Pareto Coverage Set rather than Pareto front.

• A local PCS for every state-action pair: Q(𝑠, 𝑎), containing
all Pareto-undominated value vectors for that state-action
pair. Please note that the original PVI by White [18] can
easily be adapted to output this.
• An expected immediate reward function R(𝑠, 𝑎) for each
state-action pair. In PVI this is given (as it applies to the
planning setting), in PQL this is learnt.
• A transition probability function 𝑇 (𝑠 ′ |𝑠, 𝑎). In PVI this is
given. The original PQL algorithm does not learn this, be-
cause it is applied to deterministic-transition MOMDPs only,
but it can easily be adapted to learn 𝑇 (𝑠 ′ |𝑠, 𝑎) alongside
R(𝑠, 𝑎).

Assuming the initial state is always the same, i.e., 𝑠0, and the
above-mentioned information is available, selecting the initial ac-
tion is not a problem. Specifically, we select the action for which:

argmin
𝑎

min
q∈Q(𝑠0,𝑎)

| |q − V𝑢 | |. (5)

This generalises to the following: given the value vector, V, that
we should follow in a given state, 𝑠 , we should execute the action
for which the local PCS Q(𝑠, 𝑎) contains the value vector that most
closely resembles the target V:

𝜋 (𝑠 |V) = argmin
𝑎

min
q∈Q(𝑠,𝑎)

| |q − V| |. (6)

However, this does not constitute a full policy. This is due to the fact
that, while we know which vector to follow at this timestep, this
does not imply we automatically knowwhich vector to follow in the
next timestep. Specifically, to know which vector we need to follow
in the next timestep, we need to analyse how the current vector V
is built up from combinations of vectors in the next timestep. This
is given by the (vectorial) Bellman equation:

V = R(𝑠, 𝑎) + 𝛾
∑
𝑠′

𝑇 (𝑠 ′ |𝑠, 𝑎)v𝑠′, (7)

where v𝑠′ is the appropriate vector that we should follow from state
𝑠 ′, given that we started in 𝑠 and were following V. This cannot be
solved by defining a single target vector to follow in every state.
For example, imagine an MOMDP (with 𝛾 = 1) where in state
𝑠0, we aim to follow V𝑢 = (5, 5), for which we need to perform
action 𝑎0, that transitions to two possible subsequent states, 𝑠1,1
and 𝑠1,2, with equal probability (Figure 2). From 𝑠1,1 the local PCS
is {(10, 0), (4, 4)}. From 𝑠1,2 the local PCS is {(0, 10), (4, 4)}. Now if
we continue to follow (5, 5) in both 𝑠1,1 and 𝑠1,2, we would end up
with (4, 4), but actually the original (5, 5) vector is only attainable
if we follow (10, 0) from 𝑠1,1 and (0, 10) from 𝑠1,2. In fact, (4, 4) is a
dominated vector from 𝑠0, as we can attain (5, 5).

To know what vector v𝑠′ to follow in each possible subsequent
state 𝑠 ′ given that we were following V in the current state, let
us first define the component of V that is constituted from value
vectors for the next state, N:

N =
∑
𝑠′

𝑇 (𝑠 ′ |𝑠, 𝑎)v𝑠′ =
V − R(𝑠, 𝑎)

𝛾
. (8)

To get to the appropriate vectors, v𝑠′ to follow in the subsequent
states, we should thus solve,

arg min
v1, · · · ,vn

������
������ N − ∑

{𝑠𝑖 | 𝑇 (𝑠𝑖 |𝑠,𝑎)>0}
𝑇 (𝑠𝑖 |𝑠, 𝑎) v𝑖

������
������ , (9)

s0

s1,1

s1,2

a0

p = 0.5

PCS = {(10, 0), (4, 4)}

PCS = {(0, 10), (4, 4)}

...

p = 0.5

Vu = (5, 5)

(10, 0)

(4, 4)

(4, 4)

(0, 10)

Figure 2: MOMDP demonstrating the POP-following prob-
lem. After taking one step in the environment, trying to fol-
low the initial V𝑢 = (5, 5) is no longer a straightforward pro-
cess. Please note that after states 𝑠1,1 and 𝑠1,2 the episode ends
after taking the either action (𝑎0 or 𝑎1).

where v𝑖 is selected from the correspondingV(𝑠𝑖) =
⋃

𝑎 Q(𝑠𝑖 , 𝑎),
for every transition we encounter during policy execution.

This is a non-trivial problem. Firstly, because both PVI and PQL
both approximate their results, the minimisation of Equation 9 will
not be entirely 0, and because of the absolute value, the target is
non-linear in its constituent components. Furthermore, because
we need to select a vector for every subsequent state 𝑠𝑖 for which
𝑇 (𝑠𝑖 |𝑠, 𝑎) > 0, the size of the search space of this optimisation
problem grows exponentially in the number of subsequent states.
Specifically, if the maximum size of a local PCS, Q(𝑠𝑖 , 𝑎), is 𝑃 , the
size of the action space is 𝐴, and the maximum size of the set of
possible subsequent states from any state 𝑠 is 𝑋 , the size of the
search space is 𝑂 ((𝐴𝑃)𝑋).

We thus come to the conclusion that following a Pareto-optimal
policy – by selecting a value vector from the output of PVI or PQL
in anMOMDPwith stochastic state transitions – leads to a combina-
torial optimisation problem every timestep during policy execution.
To summarise, policy execution is presented in Algorithm 1. At
each timestep, the algorithm starts from a value vector V and the
current state 𝑠 . First, the action to execute is selected using Equa-
tion 5, which is subsequently executed in the environment. This
provides us with the next state, 𝑠 ′, for which we have to select the
next value vector to follow. Selecting this value vector is done by
a function, selectNextValueVector(N, 𝑠, 𝑎, 𝑠 ′), that either solves
the aforementioned combinatorial optimisation problem heuristi-
cally (Section 4) or uses a pretrained solver for this problem in the
form of a neural network (Section 5). Please note that to calculate
N, the expected reward R(𝑠, 𝑎) is used, rather than the received re-
wards r. This is because under SER, we need to calculate everything
in expectation.

4 POPF LOCAL SEARCH
The most straightforward approach to solving the combinatorial op-
timisation problems that arise from POP following, is using heuris-
tic search at every timestep. In this paper, we employ an iterative
local search scheme. Firstly, we propose a local search algorithm

Algorithm 1 Pareto-Optimal Policy Execution
Input: The selected value-vector V, the initial state 𝑠0, the

environment env, the local PCSs Q(𝑠, 𝑎)
1: 𝑠 ← 𝑠0
2: while 𝑠 is not terminal do
3: 𝑎 ← argmin𝑎 minq∈Q(𝑠,𝑎) | |q − V| |
4: r, 𝑠 ′ ← env.executeAction(𝑎)
5: N← V−R(𝑠,𝑎)

𝛾

6: V← selectNextValueVector(N, 𝑠, 𝑎, 𝑠 ′)
7: 𝑠 ← 𝑠 ′

8: end while

Algorithm 2 Pareto-optimal Policy Following Local Search
Input: N, 𝑠 , 𝑎, a start solution vs = [v1, ..., v𝑛].

Output: a solution vs = [v1, ..., v𝑛] approximating Eq. 9.
1: S′ ← queue of all possible 𝑠 ′ for which 𝑇 (𝑠 ′ |𝑠, 𝑎) > 0

⊲ in random order
2: optval← ||N −∑

𝑖 𝑇 (𝑠𝑖 |𝑠, 𝑎)vs[𝑖] | |
3: while S′ is not empty do
4: 𝑠𝑖 ← S′.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
5: for all possible values v𝑖 inV(𝑠𝑖) do
6: vs′ ← vs
7: vs′[𝑖] ← v𝑖
8: if | |N −∑

𝑖 𝑇 (𝑠𝑖 |𝑠, 𝑎)vs′[𝑖] | | < optval then
9: optval← ||N −∑

𝑖 𝑇 (𝑠𝑖 |𝑠, 𝑎)vs′[𝑖] | |
10: vs← vs′

11: Reset S′ with all possible subsequent states 𝑠 ′
12: end if
13: end for
14: end while
15: return vs, optval

that optimises for Equation 9, Pareto-optimal Policy Following Local
Search (POPF-LS) (Algorithm 2), that given a state-action pair, 𝑠, 𝑎,
and an N-vector as defined in Equation 3, starts from a(n initially
random) combination vs of vectors from the subsequent states, and
optimises this combination in order to approach N as closely as
possible. vs then contains a vector to follow in each possible subse-
quent state. Therefore, as soon as 𝑠 ′ is observed, the corresponding
vector can be selected, vs[𝑠 ′].

As a local search scheme can quickly get stuck in local optima,
we embed POPF-LS in an iterated local search scheme (Algorithm
3). The number of iterations in this iterated local search scheme
(max_iter) will determine how much time is spent on heuristic
search at each timestep. We hypothesise, due to the relatively small
size of the problems in tabular settings, that it would be possible
to find a qualitatively high solution to Equation 9, if given enough
time. We test how much time is required in Section 6.

Please note that to use any of these optimisers in Algorithm 1,
we should select the right value vector from vs. Further note that
if we set 𝑝 = 1 in Algorithm 3, we obtain what is known as a multi-
start local search scheme rather than an iterated search scheme.
Along with iterated POPF-LS we also test this multi-start POPF-LS
approach in Section 6.

Algorithm 3 Iterated POPF-LS
Input: N, 𝑠 , 𝑎, a perturbation probability 𝑝 , max_iter.

Output: a solution vs = [v1, ..., v𝑛] approximating Eq. 9.
1: vs← a random combination of vectors for each possible sub-

sequent state.
2: val← −∞
3: 𝑥 ← 0
4: while 𝑥 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
5: vs′ ← vs
6: for each subsequent state, 𝑠𝑖 , for which 𝑇 (𝑠 ′ |𝑠, 𝑎) > 0 do
7: if random number in [0,1] < 𝑝 then
8: vs[𝑠𝑖] ← a random vector fromV(𝑠𝑖)
9: end if
10: end for
11: vs′, val′ ← 𝑃𝑂𝑃𝐹 − 𝐿𝑆 (N, 𝑠, 𝑎, vs′) ⊲ Algorithm 2
12: if val′ > val then
13: val← val′

14: vs← vs′

15: end if
16: 𝑥++
17: end while
18: return vs and optval

5 POP NETWORKS
An alternative to using heuristic search at policy execution time,
is to train a POP following network during planning or learning.2
In this paper, we will assume the PCSs are retrieved by planning
via Pareto Value Iteration (PVI) [18].3 This is a value iteration
algorithm, that in each iteration bootstraps the PCSs in Q(𝑠 ′, 𝑎′) of
the subsequent states, 𝑠 ′, to build PCSs for a given state action pair
Q(𝑠, 𝑎), using the following formula:

Q(𝑠, 𝑎) ← R(𝑠, 𝑎) + 𝛾 PPrune

(⊕
𝑠′

𝑇 (𝑠 ′ |𝑠, 𝑎)
⋃
𝑎′
Q(𝑠 ′, 𝑎′)

)
, (10)

where ⊕ denotes the cross-sum between sets of vectors, and PPrune
is an algorithm that prunes away all Pareto-dominated vectors.4

Now let us recall the POP following problem. That is, given
N, as defined in Equation 3, 𝑠 , 𝑎, and the subsequent state, 𝑠 ′ as
input, we need the right vector v𝑠′ as output. We note that while
we are executing Equation 10, we could in fact keep track of all the
constituent vectors from Q(𝑠 ′, 𝑎′) that lead to a vector in Q(𝑠, 𝑎),
noting that the N vector is merely the vector in Q(𝑠, 𝑎) minus the
immediate expected reward R(𝑠, 𝑎) divided by 𝛾 . In other words,
we can create data of the following format:

N, 𝑠, 𝑎, 𝑠 ′ → v𝑠′,

which can be used as input and targets for a supervised learning
problem, while executing PVI. When we apply this data to train
2In practice, we generate the training data for the neural network during planning,
and train the network parameters after planning, as this makes the code more modular,
such that the planning does not need to be re-run while updating the neural network
training procedure. Please note that, as this happens before selecting the value vector to
execute, and before policy execution, we still consider it part of the planning/learning
phase.
3Please note that in the original paper by White [18], the name PVI is not used. We
adopted this name for the algorithm from [13].
4For an example of a simple implementation of PPrune see e.g., [10], Algorithm 2.

a neural network, we can obtain an approximate POP following
solution specific to the MOMDP for which we performed PVI.

In the next section, we compare the neural network approach to
the POPF Local Search approach on MOMDPs.

6 EXPERIMENTS
In this section we empirically compare the POPF local search, multi-
start POPF local search, and iterated POPF local search approaches
as described in Section 4 to the neural network approach described
in Section 5. We employ randomly generated MOMDPs as used
in [11]. For a random MOMDP, we run PVI, to learn the local
PCSs. Subsequently, we use each POP-following method (one of the
POPF local search approaches or POP networks) to do 200 roll-outs,
following the same value vector, V𝑢 from the starting state (selected
at random). The average return obtained via these roll-outs is the
estimate of the value of the followed policy V̂𝜋 . We use the 𝜀-metric
[24] to evaluate the quality of V̂𝜋 with respect to V𝑢 . Specifically,
we calculate:

𝜀 = inf
𝜀∈R≥0

{
∀𝑖 = 1 . . . 𝑛 : 𝑉𝑢

𝑖 ≤ 𝑉
𝜋
𝑖 + 𝜀

}
, (11)

where 𝑛 is the number of objectives, as a measure of quality. Please
note that this means that if V̂𝜋 Pareto-dominates V𝑢 , 𝜀 = 0. This can
happen, as we run PVI [18] for a finite number of iterations, starting
from a vector of zeroes, meaning that for the random MOMDPs
(which have only positive rewards), the found value-vectors are
a guaranteed underestimation. If this happens, we argue that the
maximal utility loss incurred by the user is 0. The maximal utility
loss (MUL) incurred for 𝜀 > 0 is 𝜖

√
𝑛𝐿, where 𝐿 is the Lipschitz-

constant describing how continuous the utility function of the user
is [22].

For the POP networks, we use MLPs with 3 hidden layers with
subsequently 16, 8, and 4 nodes, with ReLU activations. For training
the network, we use the Adam optimiser, with a learning rate of
1 × 10−4 (0.0001) and the mean squared error loss. For the training
procedure we use a 80−20 split between the training and validation
sets, with a batch size of 32, and save the best model obtained over
3000 epochs. We note that we did not optimise the neural network
structure, or its hyperparameters, so there may well be performance
gains achievable by performing such optimisations. For this paper
however, we aim to show that this approach works out of the box
with a fairly basic structure.

The code for our algorithms and experiments – including the
exact MOMDPs and value vectors outputted by PVI – is available at
https://github.com/rradules/POP-following.5 All experiments were
run on a AMD Ryzen 5 1600 Six-Core Processor (Clock speed 3.2
GHz), 80 GB RAM.

6.1 Random MOMDP 1
The first randomly generated MOMDP has 10 states, 2 actions, 2
objectives, and 4 subsequent states (𝑠 ′) that are reachable for each
state-action pair, (𝑠, 𝑎) with randomly generated transition prob-
abilities 0 < 𝑇 (𝑠 ′ |𝑠, 𝑎) < 1 (summing to one). The exact MOMDP
5Please note that in the code, PVI – including the PCS output and the data set creation
for the neural networks – is run separately from the training of the neural networks,
and again separate from the policy execution code. We did so to keep the code modular,
and to not have to re-plan and re-train when evaluating different policy execution
approaches.

definition will be included in the experimentation code upon publi-
cation. Running PVI lead to a total of 1563 vectors for local PCSs
in the initial state, Q(𝑠 = 0, 𝑎 = 0) ∪ Q(𝑠 = 0, 𝑎 = 1). From this
set, a (Pareto-undominated) vector, V𝑢1 , to follow is chosen at ran-
dom. In total there were 19208 value vectors in the PCSs across all
state-action pairs.

In order to compare the local search approaches to the neural
network approach, we run the algorithms on this MOMDP. We
first compare the quality in terms of the 𝜀-metric, of the value
estimated by averaging over 200 roll-outs of using the POP Neural
Network (POP-NN), versus POPF Local Search (LS), and Multi-Start
and Iterated POPF-LS (MLS and ILS) using 5 iterations of POPF-LS
each, with ILS having a perturbation probability 𝑝 = 0.3.

Table 1: 𝜀-metric results for MOMDP1. Number of iterations
for ILS and MLS is 10.

POP-NN LS MLS ILS
𝜖-metric 0.05178 0.23108 0.0 0.09310

As the results in Table 1 indicate, POP-NN is able to get close to
the selected value vector (𝜀 = 0.05178) while one run of POPF LS is
much further off (𝜀 = 0.23108). This can be mitigated however, by
running POPF LS multiple times each action selection from random
initial solutions, i.e., MLS. Doing this 5 times resulted in an 𝜀 of 0.
ILS with 5 iterations does not yet get to 0, but also takes less time
than MLS.

When we raise the number of iterations for MLS and ILS to 10,
they both obtain 𝜀 = 0 (Figure 3). Furthermore, raising the number
of iterations further consistently keeps 𝜀 = 0. For an equal number

5 10 15 20 25
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
ps

ilo
n

m
et

ric

Method

MLS
ILS

Figure 3: The 𝜀 (Equation 11) of the value vector estimate
over 200 roll-outs, V̂𝜋 , of MLS and ILS as a function of
the number of iterations (i.e., max_iter in Algorithm 3) for
MOMDP1.

of iterations, such as 10 as shown in Figure 4, ILS is faster than MLS.
However, in terms of runtime, all local search methods are blown
out of the water by POP-NN, which uses a factor 42 less runtime.We

https://github.com/rradules/POP-following

POP-NN LS MLS ILS
Method

0

5

10

15

20

A
ve

ra
ge

 ru
nt

im
e

(s
)

0.1

5.7

15.2 14.9

Figure 4: Average runtime per roll-out, estimated over 200
roll-outs for MOMDP1 (error bars represent the standard de-
viation).

Table 2: 𝜀-metric results for MOMDP2. Number of iterations
for ILS and MLS is 10.

POP-NN LS MLS ILS
𝜖-metric 0.04131 0.40360 0.31725 0.36711

further note that MLS uses less than double the amount of runtime
as LS. This is because a lot of preprocessing is done (e.g., multiplying
the vectors in the local PCSs by the transition probabilities), which
does not need to be repeated the second time LS is called by MLS.

To summarise, we can conclude that POP-NN uses a fraction of
the runtime of LS, and does achieve better results than LS. However,
MLS and ILS are able to achieve better results than POP-NN, if
given sufficient runtime, on this 10-state 2-action MOMDP.

6.2 Random MOMDP 2
The second randomly generated MOMDP has 20 states, 3 actions, 2
objectives, and 7 subsequent states (𝑠 ′) that are reachable for each
state-action pair, (𝑠, 𝑎) with randomly generated transition prob-
abilities 0 < 𝑇 (𝑠 ′ |𝑠, 𝑎) < 1 (summing to one). The exact MOMDP
definition will be included in the experimentation code upon publi-
cation. Running PVI lead to a total of 284 vectors for local PCSs in
the initial state, Q(𝑠 = 0, 𝑎 = 0) ∪ Q(𝑠 = 0, 𝑎 = 1) ∪ Q(𝑠 = 0, 𝑎 = 2).
From this set, a (Pareto-undominated) vector, V𝑢1 , to follow is cho-
sen at random. In total there were 7971 value vectors in the PCSs
across all state-action pairs. So while MOMDP2 has a larger state
and action space, the PCSs are actually significantly smaller.

Again, we first compare the quality in terms of the 𝜀-metric, of
the value estimated by averaging over 200 roll-outs of using the
POP Neural Network (POP-NN), versus POPF Local Search (LS), and
Multi-Start and Iterated POPF-LS (MLS and ILS) using 10 iterations
of POPF-LS each, with ILS having a perturbation probability 𝑝 = 0.3.
This results in Table 2. Furthermore, we determine the runtimes
that correspond to the quality measurements of Table 2 resulting in

POP-NN LS MLS ILS
Method

0

5

10

15

20

A
ve

ra
ge

 ru
nt

im
e

(s
)

0.1

4.2

7.1 6.7

Figure 5: Average runtimes over 200 roll-outs for MOMDP2
(error bars represent the standard deviation).

Figure 5. A striking difference with MOMDP1 is that now POP-NN
attains much better results than LS, MLS, and ILS. We hypothesise
that this is because the number of value vectors in the PCSs of
MOMDP1 is much higher than that of MOMDP2, leaving LS more
options to gradually improve (at the expense of some runtime) and
increasing the probability of multiple (near-)optimal solutions to
the POP Following problems.

Another key observation in comparing the qualities and runtimes
for MOMDP1 and MOMDP2, is that the POP neural networks per-
form consistently well on both problems. Furthermore, the runtime
of the POP-NN approach is not significantly effected by differences
in the number of value vectors in the PCS, nor the size of the size of
the state and action spaces for these – admittedly small – MOMDPs.
This is because doing a single forward pass through a neural net-
work is highly efficient compared to running heuristic optimisation
methods.

We note that the quality of the MLS and ILS approaches do seem
to increase when providing them with more iterations, as shown
in Figure 6. However, at 25 repetitions neither method comes close
to the quality achieved by POP-NN.

We thus conclude that POP-NN consistently performs well, but
not perfect, on both random MOMDP instances, at a fraction of
the runtime of local-search-based approaches. Furthermore, when
giving MLS and ILS more time to find a solution, it is possible that
optimal solutions are found, as in MOMDP1. However, it is not clear
a priori how many iterations are necessary for this to happen, as
illustrated by the results of MOMDP2. Therefore, the ideal number
of iterations – the number of iterations necessary to reach the best
possible quality while minimising runtime – needs to be tuned per
MOMDP instance, which is not ideal for use in practice.

Finally, we note that we report the runtimes of the algorithms at
execution time. We believe that this is key, as a) it can be critical
for a policy to be able to execute in real-time, and b) because we
hope that the time the policy is used in practice is much larger
than the time it takes to train a policy. Note though that this means

5 10 15 20 25
Repetitions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
ps

ilo
n

m
et

ric

Method

MLS
ILS

Figure 6: The 𝜀 (Equation 11) of the value vector estimate
over 200 roll-outs, V̂𝜋 , of MLS and ILS as a function of
the number of iterations (i.e., max_iter in Algorithm 3) for
MOMDP2.

that planning, i.e., the runtime of PVI, as well as the runtime of
the training of the neural network policies (which also happens in
advance), is not included in this analysis.

7 RELATEDWORK
In this paper, we have examined policy execution for Pareto-optimal
deterministic non-stationary policies in infinite-horizon MOMDPs
with stochastic transitions. For this, we rely on PVI [18] to produce
the Pareto coverage sets of policy value vectors for each 𝑠, 𝑎-pair.
An alternative to PVI with finite precision is presented in [5], but as
they rely on episodes of finite length and deterministic MOMDPs,
we used standard PVI in this paper.

For related MOMDP settings, policy-following mechanisms do
exist. Specifically, for MOMDPs with deterministic transitions, Van
Moffaert and Nowé [6] show policies can be executed. ForMOMDPs
with stochastic transitions, but restricting policies to be determin-
istic and stationary, the excellent work by Wiering et al. [20, 21]
shows how to do planning while simultaneously learning a deter-
ministic stationary policy.

We further note that continuous PCS approximations exist, which
also represent a manifold of possible policy parameters [8, 9]. How-
ever, these consider explicitly stochastic policies, which falls outside
the scope of this paper. Furthermore, we note that for stochastic
policies, the Pareto Coverage set (Pareto front) is always convex
[12, 16], i.e., the PCS is also the Convex Coverage Set, which is a
highly exploitable property for policy execution.

8 CONCLUSIONS
In this paper, we have identified the POP-following problem, i.e.,
the fact that in an MOMDP with stochastic transitions – even if the
transition function, reward function, and the local PCSs for every
state-action pair Q(𝑠, 𝑎) are known – following the value-vector
from the PCS leads to a combinatorial optimisation problem to solve

at every timestep during policy execution. These combinatorial
optimisation problems have a search-space size of𝑂 ((𝐴𝑃)𝑋), where
𝑃 is the maximum size of a local PCS, Q(𝑠𝑖 , 𝑎), 𝐴 is the size of the
action space and 𝑋 is the maximum size of the set of possible
subsequent states from any state 𝑠 .

To tackle the POP-following problem, we have proposed two
types of heuristic methods, one based on local search, and one based
on training a neural network during planning (or learning). When
comparing these two approaches on random MOMDPs of different
sizes, we have found that POP neural networks consistently perform
well, though not perfect, at a fraction of the runtime of local-search-
based approaches. Multi-start and iterated POPF local search do
get better as the number of iteration increases, and it may well be
possible to execute a policy which (almost) perfectly approximates
the user-selected value vector. However, it is unclear a priori how
many iterations this takes, as this number of iterations appears to
be highly problem dependent.

We therefore conclude that it is possible to tackle the POP-
following problem in practice to execute Pareto-optimal determin-
istic non-stationary policies in stochastic MOMDPs. Because of
the favourable trade-off between runtime and quality, we would
recommend using POP neural networks for Pareto-optimal policy
execution.

For this paper, we have looked at a tabular setting, and used a
planning algorithm, i.e., White’s Pareto Value Iteration algorithm
[18], to retrieve the Pareto coverage sets, while assuming that the
transition and reward functions are given. We note that our ap-
proach also applies if the Pareto coverage sets result from rein-
forcement learning rather than planning [6], and the transition and
reward functions are learned from interaction as well. However,
we did not yet test this experimentally. We aim to investigate the
reinforcement learning approach in future work. Furthermore we
hope to extend our approach to settings in which the number of
subsequent states is unknown, and with high-dimensional state
signals, i.e., deep multi-objective RL [7].

Finally, wewould like to note that we have studied POP-following
for value vectors in coverage sets learnt for the scalarised expected
returns (SER) optimality criterion [12]. Recently, coverage sets have
also been proposed for the expected scalarised returns (ESR) op-
timality criterion [3], which offers an interesting line of future
research for policy-following as well.

ACKNOWLEDGMENTS
Wewould like to express our sincere gratitude to Conor F. Hayes for
his feedback on the paper. This research was supported by funding
from the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen”.

REFERENCES
[1] Robert T Clemen. 1996. Making hard decisions: an introduction to decision analysis.

Brooks/Cole Publishing Company.
[2] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,Matthew

Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard
Dazeley, Fredrik Heintz, et al. 2021. A Practical Guide to Multi-Objective Rein-
forcement Learning and Planning. arXiv preprint arXiv:2103.09568 (2021).

[3] Conor F Hayes, Timothy Verstraeten, Diederik M Roijers, Enda Howley, and
Patrick Mannion. 2021. Dominance Criteria and Solution Sets for the Expected
Scalarised Returns. In Proceedings of the Adaptive and Learning Agents workshop
at AAMAS, Vol. 2021.

[4] MI Henig. 1980. Dynamic programming with returns in partially ordered sets.
Research Memorandum, University of British Columbia (1980).

[5] Lawrence Mandow, JL de la Cruz, and N Pozas. 2020. Multi-objective dynamic
programming with limited precision. arXiv preprint arXiv:2009.08198 (2020).

[6] Kristof Van Moffaert and Ann Nowé. 2014. Multi-Objective Reinforcement
Learning using Sets of Pareto Dominating Policies. Journal of Machine Learning
Research 15, 107 (2014), 3663–3692. http://jmlr.org/papers/v15/vanmoffaert14a.
html

[7] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson.
2016. Multi-objective deep reinforcement learning. In Proceedings of the Deep
Reinforcement Learning workshop at NIPS’16.

[8] Simone Parisi, Matteo Pirotta, and Jan Peters. 2017. Manifold-based multi-
objective policy search with sample reuse. Neurocomputing 263 (2017), 3–14.

[9] Matteo Pirotta, Simone Parisi, and Marcello Restelli. 2015. Multi-objective rein-
forcement learning with continuous Pareto frontier approximation. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 29.

[10] Diederik Marijn Roijers. 2016. Multi-Objective Decision-Theoretic Planning. Ph.D.
Dissertation. University of Amsterdam.

[11] Diederik M Roijers, Denis Steckelmacher, and Ann Nowé. 2018. Multi-objective
reinforcement learning for the expected utility of the return. In Proceedings of
the Adaptive and Learning Agents workshop at FAIM, Vol. 2018.

[12] Diederik M Roijers, Peter Vamplew, ShimonWhiteson, and Richard Dazeley. 2013.
A survey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research 48 (2013), 67–113.

[13] Diederik M Roijers and ShimonWhiteson. 2017. Multi-objective decision making.
Synthesis Lectures on Artificial Intelligence and Machine Learning 11, 1 (2017),
1–129.

[14] Roxana Rădulescu, Patrick Mannion, Diederik M. Roijers, and Ann Nowé. 2020.
Multi-objective multi-agent decision making: a utility-based analysis and survey.
Autonomous Agents and Multi-Agent Systems 34, 1 (April 2020), 10. https://doi.
org/10.1007/s10458-019-09433-x

[15] R.S. Sutton and A.G. Barto. 1998. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA.

[16] Peter Vamplew, Richard Dazeley, Ewan Barker, and Andrei Kelarev. 2009. Con-
structing stochastic mixture policies for episodic multiobjective reinforcement
learning tasks. In Australasian joint conference on artificial intelligence. Springer,
340–349.

[17] Peter Vamplew, Richard Dazeley, Cameron Foale, Sally Firmin, and Jane Mum-
mery. 2018. Human-aligned artificial intelligence is a multiobjective problem.
Ethics and Information Technology 20, 1 (2018), 27–40.

[18] DJ White. 1982. Multi-objective infinite-horizon discounted Markov decision
processes. Journal of mathematical analysis and applications 89, 2 (1982), 639–647.

[19] D. J. White. 1978. Finite Dynamic Programming: An Approach to Finite Markov
Decision Processes. John Wiley & Sons, Inc., USA.

[20] Marco A Wiering and Edwin D De Jong. 2007. Computing optimal stationary
policies for multi-objective markov decision processes. In 2007 IEEE International
Symposium on Approximate Dynamic Programming and Reinforcement Learning.
IEEE, 158–165.

[21] Marco AWiering, Maikel Withagen, and Mădălina M Drugan. 2014. Model-based
multi-objective reinforcement learning. In 2014 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 1–6.

[22] Luisa M Zintgraf, Timon V Kanters, Diederik M Roijers, Frans Oliehoek, and
Philipp Beau. 2015. Quality assessment of MORL algorithms: A utility-based
approach. In Benelearn 2015: Proceedings of the 24th Annual Machine Learning
Conference of Belgium and the Netherlands.

[23] Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and
Ann Nowé. 2018. Ordered preference elicitation strategies for supporting multi-
objective decision making. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 1477–1485.

[24] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. 2008. Quality assessment of
pareto set approximations. Multiobjective optimization (2008), 373–404.

http://jmlr.org/papers/v15/vanmoffaert14a.html
http://jmlr.org/papers/v15/vanmoffaert14a.html
https://doi.org/10.1007/s10458-019-09433-x
https://doi.org/10.1007/s10458-019-09433-x

	Abstract
	1 Introduction
	2 The Multi-objective MDP Model
	3 The POP following problem
	4 POPF Local Search
	5 POP Networks
	6 Experiments
	6.1 Random MOMDP 1
	6.2 Random MOMDP 2

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

