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ABSTRACT

Multi-objective multi-agent systems are prevalent in many real-
world scenarios. We are interested in such systems where multiple
learning agents act in an environment and receive a vectorial pay-
off relating to the range of objectives, rather than a single scalar
reward. In this work, we investigate the question of whether com-
munication in multi-objective normal-form games (MONFGs) can
alter possible equilibria and lead to changes in action selection prob-
abilities or learning curves. We carry out a series of experiments on
five MONFGs that immerse the agents in a range of self-interested
and cooperative scenarios. We investigate the nuances of commu-
nicating in different situations and determine that communication
can alter the learning process and lead to the emergence of new
solution concepts that have not been previously observed in multi-
objective multi-agent settings. We also find that communication
is preferred in cases where no Nash equilibria exist. On the other
hand, when Nash Equilibria are present, agents are indifferent to
communication.
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1 INTRODUCTION

In the past, multi-agent decision making problems have been suc-
cessfully modeled using multi-agent systems (MAS) with results
in challenging domains such as traffic management [8, 19], robot
teams [7] and smart electric grids [14]. One fundamental problem
that still remains however, is the fact that these systems have mostly
been developed to focus on optimising for a single objective, even
though the environments in which they operate often present a
range of conflicting objectives. In fact, many real-life scenarios
have multiple objectives and as such require a multi-objective ap-
proach. For example, a firm providing logistics has the (possibly
conflicting) objectives to deliver all goods as fast as possible to their
destination, with the lowest associated cost as possible, while also
minimising carbon emissions to minimise its strain on the environ-
ment. The problem that remains for the firm in question is what
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specific policy to use to get the best overall utility. In recent years,
more research is being done in this area with the development of
multi-objective multi-agent systems (MOMASs) [20] as a modeling
tool for decision making in the presence of multiple agents and ob-
jectives. In this paper we take a utility-based approach towards this
problem, and assume that there exists a utility function to scalarise
the vectorial payoff and derive the final utility of each agent [16].
We focus on a subset of MOMASs, namely multi-objective normal-
form games (MONFGs) [2, 4, 21, 23]. This paper proposes novel
solutions towards finding Nash equilibria or otherwise stable solu-
tions by introducing communication between the different agents.
The communication strategies we develop are modeled as Stackel-
berg games. In each game we pick a leader who commits to either
an action or mixed strategy and a follower that is able to use this
information to select their response. We test these communication
strategies in both self-interested and cooperative settings, by influ-
encing how the follower can respond to the message. This is then
evaluated on a set of environments, to determine the impact on the
learning process and learned strategies. Concretely, we contribute
the following!:

(1) We develop and empirically evaluate a range of different
communication techniques, both under cooperative and self-
interested dynamics.

(2) We find that communicating in settings where agents are
looking to cooperate can moderately boost the learning
process.

(3) We show that when agents are in a game with self-interested
dynamics, agents cycle through a range of stationary policies,
thereby playing a cyclic equilibrium. We note that this is the
first time this solution concept has emerged in a MONFG.

(4) We show that when agents are left to choose whether they
should communicate or not, agents that are in a game where
no Nash equilibria exist will communicate approximately
half the time. Agents that are in a game where there is a
Nash equilibrium are indifferent to communication, since
they are capable of finding that Nash equilibrium reliably
without it.

! The implementation of all experiments performed in this work can be found at the
following link: https://github.com/wilrop/communication_monfg


https://github.com/wilrop/communication_monfg

2 BACKGROUND

In this section, we discuss the necessary background. We start by
defining MONFGs and utility functions. We then move to explain
multi-objective optimisation criteria and the impact on possible
solutions. After this, we briefly explain the actor-critic framework,
which is the learning algorithm that we have used for our agents.
Lastly, we discuss the concept of Stackelberg games, as it is the
model on which we base our communication framework for this
work.

2.1 Multi-Objective Normal-Form Games

A MONFG can be intuitively understood as a regular normal-form
game where the payoff received by the agents is not a scalar value,
but rather a vector of payoffs. Each element in this vector then
corresponds to the value of a different objective. We can formally
define this as follows:

Definition 2.1 (Multi-objective normal-form game). A (finite, n-
person) multi-objective normal-form game is a tuple (N, A, p) with
n > 2 and d > 2 objectives, where:

e N is a finite set of n players, indexed by i;
o A =A1X---XAp, where A; is a finite set of actions available

to player i. Each vector a = (ay,...,an) € A is called an
action profile;
e p=(p1,..., pn) where p; : A — R9 is the vectorial payoff

of player i, given an action profile.

In this paper, we follow a utility-based approach [16]. In this
approach, each agent i derives a utility from the payoff vector by
applying their own scalarisation function, called the utility func-
tion u; : RY — R, to this vector. An example of this is a linear
utility-function which simply assigns a weight w € [0, 1] to each
objective o. It is also possible for utility functions to be non-linear.
In general, we assume that each utility function is at least monoton-
ically increasing, which intuitively means that an agent will always
prefer more of any objective over less (given equal rewards for the
other objectives). Formally:

(Yo.p] = p5) = u(p™) = u(p”™) M
with two policies 7 and #’. This definition of a utility function
instantly raises the question about what the agent should optimise
for. In some cases, it would be favourable to optimise for the utility
of each individual policy execution, resulting in what is called the
Expected Scalarised Returns (ESR) criterion [9, 15, 21]:

pui =E[u(p])] )
with py ; the expected utility for agent i with utility function u and
p7 the vectorial reward for agent i under joint policy .
Alternatively, it is possible that the agent cares about optimising
for the utility it can derive from several executions of the same
policy, in which case we first calculate the expectation over the
returns before scalarising this vector. This is called the Scalarised
Expected Returns (SER) criterion[16, 21]:

pui=u(E[p]]) ®)

where py, ; is now the utility of the expected returns.
As a concrete illustration to show the differences between the
ESR and SER optimisation criterion, consider the logistics example

that we previously mentioned. Choosing whether to optimise for
the average utility of each individual package delivery or attempting
to optimise the utility for the average delivery can result in two very
different policies. The choice between these optimisation criteria is
thus important to consider, as it has also been shown that ESR and
SER are not equivalent under non-linear utility functions [21]. This
work further showed that in stateless settings ESR can be reduced
to a single-objective problem when the utility functions are known,
implying that regular reinforcement learning (RL) techniques can
be used to solve such problems. The SER criterion on the other
hand can not easily be solved by traditional RL techniques and has
been understudied thus far. For these reasons, we concern ourselves
with the SER optimisation criterion in this work.

2.2 Solution Concepts

To understand the fundamental dynamics of multi-objective games
we use game-theoretic equilibria as solution concepts. A well-
known solution concept is the Nash equilibrium [12]. The original
formulation for Nash equilibria (NE) used in single-objective games
is adapted to multi-objective games as follow [20]:

Definition 2.2 (Nash equilibrium for scalarised expected returns).
A joint policy zNE leads to a Nash equilibrium under the scalarised
expected returns criterion if for each agenti € 1, - - , n and for any
alternative policy 7; :

u; (Epi (ﬂlNE nﬂE)) > uj (EPi (”i) ”ﬂE))

This definition is similar to the definition of a NE in a regular
NFG. We must note that although every single-objective NFG has
at least one NE, it has been proven that in MONFGs under SER,
Nash equilibria need not exist [21]. An open question that remains
is in what cases NEs do exist and to what other behaviour agents
converge, if there are no NEs.

In the context of this work, it is also important to define the
concept of a cyclic equilibrium in multi-objective settings. Cyclic
equilibria extend the concept of Nash equilibria to cyclic policies,
which are a sequence of stationary policies = = {7y, - - , 7 }. They
were first described in Markov games [32], but due to the way in
which our agents communicate can also occur in MONFGs. We can
formally define this solution concept as follows:

Definition 2.3 (Cyclic Nash equilibrium for scalarised expected
returns). A joint cyclic policy #NE, with ﬂ'lN E_ {nﬁE, e ,ﬂﬁf }
leads to a cyclic Nash equilibrium under the scalarised expeéted
returns criterion if for each agent i € {1,---,n}, each policy j €

{1,---, k} and for any alternative cyclic policy 7;:
uj (Epi (ﬂf\ﬁE ﬂ},\ﬁ)) > u; (Epi (ﬁi,j, ﬂj,\ﬁ))

2.3 Actor-Critic

To learn policies from interaction, agents in MOMASs often employ
reinforcement learning (RL) algorithms. A popular algorithm that
can be used for this is policy gradient [27, 30]. In policy gradient,
we learn a policy 7y parameterised by 6 that outputs an action
simply based on the input as follows:

n(als,0) =Pr{As = alS; =s,6; = 6} (4)



The parameters 6 in this policy can be learned using the gradient
of an objective function J(0) by performing gradient ascent on this
function. In practice, using regular policy gradient often results in
high variance. Actor-critic methods combine both policy gradient
and value-based approaches, by using learned Q-values (the critic)
as a baseline for updating the policy (the actor) [27]. By doing this,
we can use these Q-values as a baseline in order to reduce variance
and increase stability. The objective function that is used in this
work comes naturally from the SER optimisation criterion that we
follow.

J(6) =u (Z ﬂ(aIO)Q(a)) 5)
acA

In this formula, a € A is an action available to the agent and Q(a)
is the vectorial Q-value associated with this action. This makes it
so that Y ,c4 7(a|0)Q(a) represents the expected multi-objective
return of the current policy. To optimise for the SER, we have to
perform two consecutive steps. Firstly, we need to update the Q-
table by following an adaptation of the Q-learning update rule to
account for vectorial state-action values [21]:

Q(ar) « Q(ar) +ag [pr — Q(ar)] (6)
Where ag is the learning rate for the Q-values. We can then up-
date the parameters 0 by calculating the gradient of the objective
function with the new Q-values as follows:

0141 = 0; +agVJ(6;) (7)

2.4 Stackelberg Game

A Stackelberg game is a game-theoretic concept that attempts to
model leader-follower dynamics in games. In a Stackelberg game,
multiple agents are in a scenario where one or more agents are clas-
sified as leaders and other players as followers. In each round, the
leaders will publicly commit to a certain action, or a mixed strategy
in some cases, after which the followers are able to react to the
committed action by selecting their best response [13]. Announcing
ones action before actually taking it might present itself as a bad
idea, since other agents could simply take advantage of it. This is
certainly the case in single-objective games. As an example take the
case of the rock-paper-scissors game. By announcing what you will
play, the other player can always win. However, in a multi-objective
setting, an agent’s utility function is generally unknown to other
agents. By committing to playing a specific action, this might lead
agents to learn about each others utility functions faster, and in
turn resulting in acceptable compromises faster. We use Stackel-
berg games as a basis for the communication process of agents in a
MONFG.

3 COMMUNICATING IN MONFGS

To study whether communication can benefit learning in MONFGs,
we propose four different communication settings, meant to evalu-
ate different aspects and dynamics that can emerge. As a baseline,
we also consider a fifth setting in which no communication takes
place.

Stackelberg-like Communication. In all communication experi-
ments, the agents play several rounds of the same game. Each round
is conducted taking inspiration from Stackelberg games, in that one

agent is the leader and communicates with the other agent about
their intentions. The other agent is the follower who is then able
to react to this communication. Agents switch after each round
between being the leader and being the follower. Also note that
after a round is played, agents continue with the regular approach
of updating the Q-values and policies, just as it would happen when
no communication was involved.

Communicating to Learn to Cooperate. The first experiment that
uses communication places the agents in a cooperative setting. We
thus assume that the agents are aiming to learn one optimal joint
policy. Each episode, the leader commits to playing an action that
was selected by their policy. This action is then communicated to
the follower, who first gets a chance to update their policy, knowing
what the other agent will play. In this setting, agents thus learn
joint-action Q-values Q(a, a’) as done in joint-action learners [6].
Because the follower knows what action the leader will play, it
knows which Q-values to select from the joint-action table. It then
uses the selected Q-values to update its policy using the actor-critic
implementation. As an example, say agent 1 commits to playing
action 1. Agent 2 can now take this row from its table and update
their policy using the Q-values found in this row. We show a visual
representation of this algorithm in Figure 1. Contrary to the Stack-

| will play action 1

Update the parameters

Select row 1 using the selected Q-values

{}{} =) 61 =0,+av J(6)

Agent 1 Agent 2

Figure 1: The setting under cooperative dynamics. In this
setting the leader commits to playing a certain action, after
which the following agent can optimise their own policy.

elberg game literature, the communicated strategy does not arise
from the inability of the leading agent to keep its strategy hidden
(e.g., airport security may need to assume that their surveillance
strategy is known). Rather, the communication in these MONFGs
is meant to foster cooperation, by letting the other agent know
what the agent likes to play. This closely resembles the iterated
best response algorithm, in which each round one player is able
to optimise their policy with regards to the other player’s current
policy [3, 5].

Self-interested Communicative Agents. The second experiment
concerns a self-interested setting, i.e., MONFGs in which the inter-
ests of the agents are not aligned. Again, each episode one agent
is selected as the leader and one agent as the follower. Only now,
instead of the agents wanting to find a single joint cooperative strat-
egy, agents learn distinct policies for different situations. When
leading, agents learn a communication policy that suits them best,
while when following agents aim to select their best response with
regards to the received message. Out all of our settings, this most
closely resembles the Stackelberg game. There are however key
differences between single-objective Stackelberg games and com-
munication between self-interested agents in a multi-objective nor-
mal form game. In a single-objective setting, playing one’s best



response would imply simply picking the maximum Q-value for
the committed action, resulting in a deterministic strategy. In this
multi-objective setting however, using scalarised expected returns,
playing a mixed strategy against the committed action can be the
best response. Specifically, this means that each agent learns a dif-
ferent policy for each possible action that can be suggested by the
other agent. We show this algorithm in Figure 2.

| will play action 1

Select response policy

%:9 m | me

Agent 1 Agent 2

Figure 2: The setting under self-interested dynamics. In this
setting the leader again commits to playing a certain action.
This time however, the following agent reacts by playing
their best response policy.

Policy Communication for Cooperation. We have implemented
two more communication settings, this time focusing on the leader
communicating their entire policy rather than their next action.
We investigate a cooperative setting where the follower uses the
communicated policy to update their own policy analogous to the
dynamics in cooperative action communication.

We note that, in contrast to the previous experiments though,
the policy communication setting cannot easily be adjusted for self-
interested dynamics. In fact, this would imply that we move away
from the actor-critic implementation we follow now. This is because
agents have continuous policies, which makes it so we cannot learn
a separate best response to each possible communication (i.e., the
leader’s communicated policy). We thus reserve investigating the
self-interested setting for future work.

A Hierarchical Approach to Communication. The last setting that
we propose, presents a natural conclusion to the question of how
communication can influence learning agents in MONGFs. In this
experiment, agents learn a total of three policies. The first policy is
at the top of the hierarchy and decides whether an agent should
communicate their policy to the other agent or not. The other two
policies are explicit policies for when the agent is in a communica-
tion setting or when it is not. As an example, say agent 1 decides
with its top level policy that it wants to communicate. It will send its
current policy under communication as a message to agent 2, who
then updates their policy used under communication and responds
by playing an action according to this policy. On the other hand, if
agent 1 decides not the communicate, it will play according to its
no-communication policy, as will agent 2.

4 EXPERIMENTS

All of our experiments were evaluated on five MONFGs that were
also used in previous work [21, 22, 31]. We broadly include two
types of games: one where no NE under SER and with the given
utility functions exist and one where at least one pure NE exists.
The games with no NE under SER can be seen in Tables 1, 2 and
the games with NE in Tables 3, 4, 5.

L M R
L [(40)]@3G1)](22
M|31)|(22)](13)
R [(2,2)|(1,3)](0,4)
Table 1: Game 1 - The (im)balancing act game. This game has
no NE under SER.

L R
L|(40| (22
R[(22) (04
Table 2: Game 2 - The (im)balancing act game without M.
This game also has no NE under SER.

L M
L [(40)](31)
M| (31 (22)
Table 3: Game 3 - The (im)balancing act game without R.
This game has one pure NE under SER, (L, M), with an ex-
pected utility of 10 for agent 1 and 3 for agent 2.

L M
L [ (41)](1,2)
M| (31)](32)
Table 4: Game 4 - A 2-action game with pure NE under SER
in (L,L) and (M,M) with expected utilities of 17 and 4 under
(L, L) and 13 and 6 under (M, M).

L M R

L [(41)|(1,2)](@21)

M|31)|[B2)] (1,2

R [ (1,2)]| (21 ](@13)
Table 5: Game 5 - A 3-action game with three pure NE under
SER. (L,L) with expected utilities of 17 and 4, (M,M) with ex-
pected utilities of 13 and 6 and (R,R) with expected utilities
of 10 and 3. Note that (R, R) is Pareto-dominated by (L, L)
and (M, M).

Throughout the experiments we see that games with no NE
all show similar behaviour to each other. The same applies to the
games with NE. For this reason, we opt to show only the results for
Game 1 and Game 5, as they have the largest action spaces and as
such show the most interesting results. For each setting, we show
the scalarised expected returns over time for both agents in Figure 3
and the empirical state distribution over the last 10% of episodes in
Figure 4 for Game 1. We show the same plots for Game 5 in Figure
5 and Figure 6.

In each game, both agents get the same payoff vector p = [p?, p?].
The utility function for agent 1 (row player) is:

ur([php’D) =p'-p' +p? p? ®)
and for agent 2 (column player) is:
w([p'p?D) =p" - p? ©)

In all experiments, agents learn an explicit policy by using an actor-
critic implementation. The actual policy is computed as a simple
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Figure 3: The scalarised expected returns for both agents when operating in Game 1 under the different communication dy-
namics. We only show the first 1000 episodes for a clearer visualisation of the learning process. The coloured area around the
scalarised expected returns represents the standard deviation of the data.
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different communication dynamics.

softmax function over the parameters 6:

el

[A:l 0;
Zj=l e’

(10)

m(a=a1l0) =

Each experiment was ran for 5000 episodes and averaged over 100
trials. Lastly, we have used a learning rate for all Q-values and

parameters 0 of 0.05, except when explicitly mentioned otherwise.

4.1 No Communication

The first setting that we evaluate has the agents playing the MONFG
without any form of communication. This experiment serves as
a baseline for other experiments, to see the precise impact of the
communication later. In Figure 3a we show the obtained SER over
time for both agents in Game 1 without communication. After
a small deviation in the beginning, we see that agents converge
quickly to a SER of 8 for agent 1 and 4 for agent 2. We also show

the state distributions for the last 10% of every run in Figure 4a.
We can clearly see that agents mostly resort to some sort of middle
ground by playing (R, L), (M, M) or (L, R) each with a respective
payoff vector of (2, 2).

We show the same plots for Game 5, with the scalarised expected
returns in Figure 5a and the state distribution in Figure 6a. We again
see that agents converge quite quickly at a utility around 13.5 for
agent 1 and 5 for agent 2. This time however, agents are able to
converge on a joint strategy by playing mostly (M, M) or (L, L),
which are the two undominated Nash equilibria in this game.

4.2 Cooperative Action Communication

The first experiment that uses communication places the agents in
a cooperative setting. As we can see in Figure 3b for Game 1 and
Figure 5b for Game 5, this leads to the same SER, but with a more
directed learning curve. What we mean by this is that the agents
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Figure 6: The empirical state distribution for the last 10% of episodes from each run when operating in Game 5 under the

different communication dynamics.

appear to converge at around the same time as without communica-
tion, but once the agent starts learning the optimal policy, there is
less time required for it to converge. In the games without NE, this
translates to the agent having a smaller divergence from the final
strategy. In the games with NE, we see a steeper learning curve
towards the optimal strategy. From the state distribution plots we
can substantiate the conclusion that the agents end up playing the
same policies as without communication, as the figures are nearly
identical. We however do note that the communication can lead
agents to play a dominated Nash equilibrium more often than with-
out communication. This can be attributed to the policy update after
the action communication. In earlier episodes, agents are mostly
communicating random actions, which might lead agents to opti-
mise for dominated NE. Because the follower agent now has two
update moments, suboptimal behaviour might be reinforced too
quickly and before sufficiently exploring alternatives. This draw-
back appears to be intrinsic to the immediate policy updates used

here, since removing this functionality would render communica-
tion useless and reduces this setting to the non-communication
setting.

4.3 Self-interested Action Communication

The second experiment involving communication also lets agents
commit to an action, but now allows the follower to pick their best
response action for a more self-interested setting. This leads to the
first surprising results in Figure 3¢ and Figure 5c. In this setting, it
is possible for agents to end up in a cyclic equilibrium, where each
agent has a different policy when committing and when following.
We also observe the first big difference between games with no
NE and games with pure NE. Looking at the state distributions for
Game 1 with no NE in Figure 4c, we see that agents do not end
up reliably playing a certain strategy. This is explainable due to
the very definition of a NE. In a game with pure NE, when one



agent commits to playing their action of an equilibrium, the other
agent has no choice but to also play this equilibrium, otherwise it
would not be a NE by definition. However, since there are no NE in
Game 1, agents can take advantage of the knowledge and exploit it
by playing an action that is more favourable to them, which then
leads to the observed behaviour where agents do not play a certain
strategy reliably. In Game 5 where there are NE, the inverse is true.
Here, an agent knows a priori what the agent will play and as such
is free to select their best response, which is their part of the NE.
This leads to the NE being played with a very high probability and
all other actions only rarely.

4.4 Policy Communication

The results in this case are very similar to the results obtained in the
cooperative action communication setting. Again, we see in the SER
plots that agents have a moderately more directed learning curve
than in the no communication setting. Also similar to this setting,
we see that when no NE are present in the MONFG, agents end up
playing the middle ground. This results in a state plot that shows no
real preference for any action combination. In the games with NE,
agents do play these NE, as the policy communication simply helps
to converge more directly to the equilibrium. We also note that this
setting appears to avoid ending up in dominated NE, contrary to the
cooperative action communication setting. This can be attributed to
the fact that agents are now clear about their uncertainty over the
actions in the earlier episodes. In the setting where a single action is
communicated, the leader selects and communicates actions mostly
at random in the beginning. To the follower however, this single
action appears as a pure strategy that the leader truly prefers as
it has no way of knowing the underlying probability distribution
of the leader. This leads the follower to optimise for a suboptimal
policy. Because the entire policy is communicated in this setting,
agents are able to avoid this trap.

4.5 Hierarchical Approach to Communication

The last experiments that were performed present a natural conclu-
sion to the question of how communication can influence learning
agents in MONGFs, by making the communication optional. The
top-level policy for whether an agent should communicate or not
is learned through the same actor-critic implementation as for the
action selection policies, but the learning rate for Q-values and
parameters 6 are set to 0.01 in this case.

First, in the games where no NE exist, the results are comparable
to the self-interested action communication setting. As we can see in
the SER plot for Game 1 in Figure 3e agents can again end up a cyclic
equilibrium. However, one interesting result that makes it different
from the self-interested action communication setting is that this
time, agents are able to reliably converge to the same strategies
as seen in Figure 4e. This setting appears to have circumvented
the problem by combining the convergence property of the no-
communication setting, with the policy communication settings. It
is also interesting to look at the actual communication probabilities
over time for both agents. We show this for Game 1 in Figure 7. We
can clearly see that here, agents will always prefer at least some
level of communication, averaging ~ 45% for agent 1 and ~ 50% for
agent 2.
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Figure 7: The probability of communication for both agents
in Game 1. The coloured area around the communication
probabilities represents the standard deviation of the data.

We also see the same pattern of cyclic equilibria in Game 5.
However when looking at the communication plots in Figure 8, we
can clearly see that here agents are indifferent to communication.
Some runs they opt for 100% communication and other for 100%
no communication. This can be attributed to the fact that they
will reach a NE in either case. This same result is also supported
by the state distribution in Figure 6e. We can see here that the
results are almost identical to the results obtained under the no-
communication setting.
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Figure 8: The probability of communication for both agents
in Game 5. The coloured area around the communication
probabilities represents the standard deviation of the data.

5 RELATED WORK

In this section we will go over related work around multi-objective
multi-agent systems and specifically MONGFs. For a more in depth
overview, we refer to the recent survey by [20]. MONFGs were
first introduced by [2]. At this time, no formal distinction was
made between ESR and SER and utility functions were also mostly
assumed to be linear [21]. Early work focused mostly on different
solution concepts in this area, with for example calculating Pareto
equilibria [4, 26] and ideal equilibria [29]. More recently, the formal
distinction between between ESR and SER that we followed in
this work was created [16, 17]. Later work proved that these two
optimisation criteria were not equal in general and that under SER
no Nash equilibria necessarily have to exist when using non-linear
utility functions [21]. This work also implemented a simple Q-
learning approach using e-greedy as its action-selection mechanism
for learning agents in these environments.



Further work developed more advanced algorithms that can han-
dle multi-objective and multi-agent settings. Opponent modeling
in specific, which has seen significant success in single-objective
multi-agent systems [1] and has been identified as a direction for
future research [20], is actively being explored. [31] introduced a
comparative study of opponent modeling in MONFGs where they
first showed an actor-critic implementation that was adapted to
work under the SER criterion and further detailed the intricacies
of using opponent-modeling in different settings. Following this
work, [22] introduced the LOLAM algorithm that was able to per-
form opponent modeling with opponent learning awareness in this
MONFG setting. Most work on this topic has been with regards to
MONFGs, with the notable exception of work by [11] which proved
that potential-based reward shaping does not alter the Pareto front
in multi-objective stochastic games.

In this work we also extensively build on the existing framework
of Stackelberg games. Stackelberg games were originally used to
model the dynamics of a duopoly by announcing the amount of
outputs for a certain firm [28]. They have seen significant adoption
in other areas as well, with successful applications in for example
scheduling [18], energy management [10] and notably security with
the introduction of Stackelberg security games [24]. This work is
not the first to realise the potential of Stackelberg games in systems
with multiple objectives. An interesting example of this was the use
of a multi-objective Stackelberg game between a regulator and a
mining company [25]. In this work, the regulator has the conflicting
objectives of maximising tax-revenues while minimising pollution
and the mining company reacts to the decisions of the regulator to
maximise its profit.

6 CONCLUSION AND FUTURE WORK

In this work we investigated the potential effects of different com-
munication strategies in MONFGs. We have taken a utility-based
approach and applied scalarised expected returns as the optimi-
sation criterion. We used Stackelberg games as a model for our
communication framework, which lets one player commit to an
action (or mixed strategy) after which the other player can select
their best response.

Five different experimental settings were developed to discover
the different dynamics and see the influence of communication.
In the first setting, we prohibit any agent from communicating
to get a baseline for future behaviour. The next setting saw the
agents in cooperative action, by every episode choosing one agent
as the leader that commits to an action and letting the other agent
update their policy based on this committed action. This resulted
in slightly more directed learning curves across all experiments.
There were however also drawbacks, as agents that were in a setting
with pure NE now more often ended up playing dominated Nash
equilibria. This can be attributed to the fact that the additional
update after the action communication effectively reduces the time
for exploration. The second setting had the same setup, but in this
case, each agent was allowed to pick their best response, thereby
enabling self-interested behaviour. What resulted in practice was
the first occurrence of cyclic equilibria in MONFGs, where agents
repeatedly play a sequence of stationary policies. The fourth setting

had agents committing to their current policy. Again, the following
agent could adjust their policy, based on what they now know

about the other agent. This resulted in approximately the same
results as the cooperative action communication. However, we
note that in this setting, agents appeared less likely to end up in
dominated Nash equilibria in games were there were any. The last
experiment attempted to answer the overarching question whether
communication is actually a benefit in these scenarios. We did
this by letting agents choose for themselves whether they wanted
to communicate or not. We saw that in games without any Nash
equilibria, agents chose to communicate approximately 50% of the
time. Lastly, we observed that in games where there were pure
NE, agents were indifferent to communicating, since they were
already able to find these equilibria reliably without the help of
communication.

For future work, we look to three different possible paths. First of
all, it would be interesting to create more intricate games, possibly
by adding Gaussian noise or by simply adding more states. We could
also extend the 2-player game to more general n-player games. This
could show even more clearly the exact impact of communication
in different settings, but would also require us to adapt the current
learning algorithms. Secondly, we aim to explore more communica-
tion strategies within the Stackelberg framework. Specifically, we
only present one optional communication experiment, namely with
policy communication. However, it would also be interesting to see
what happens in a situation with optional action communication.
Thirdly, we aim to shift our focus from the relatively simplistic
setting of MONFGs to more complex and realistic multi-objective
stochastic games. As was noted before, research in this area is still
in its infancy, but nevertheless very promising.
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