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ABSTRACT
Recent studies on multi-objective multi-agent systems, and Multi-

Objective Normal-FormGames (MONFGs) in particular, have yielded

new insights by making the different optimisation criteria – the

scalarised expected returns (SER) and expected scalarised returns

(ESR) – for these games explicit. In this paper, we study the exis-

tence and relation between Nash equilibria in MONFGs under ESR

and SER. In particular we introduce new theorems regarding the

portability of Nash equilibria (NE) between these criteria. Firstly,

we prove by construction that the number of equilibria under SER

and ESR can differ when both settings have at least one NE and that

no equilibrium need necessarily exist in both criteria for the same

game. Secondly, we analyse whether pure strategy NE persist from

the ESR criterion to the SER criterion and vice versa. Specifically,

we formally show that pure strategy NE under SERmust necessarily

also be NE under ESR, while the same does not hold the other way

around. However, if we make the additional assumption that all

utility functions that are used in the game are convex, pure strategy

NE do persist from ESR to SER.
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1 INTRODUCTION
Many real-world decision making settings involve multiple inde-

pendent actors that have their own interests and influence each

other’s behaviour [5]. Further complicating these already complex

settings is the observation that actors often also have multiple and

frequently conflicting objectives [13]. With autonomous agents

powered by artificial intelligence algorithms becoming ever more

prevalent, as well as impactful, it becomes key for agents that oper-

ate in such settings to explicitly consider these multiple objectives

to align with human needs [8, 21].

Multi-objective multi-agent decision problems are complex, and

what constitutes a solution to such problems depends on multiple

factors [18]. Not only is it important whether the agents receive the

same reward vector, i.e., a team reward versus an individual reward
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setting, but also whether the agents value the received rewards

differently, i.e., team utility versus individual utility. In this paper,

we take a look at the team reward, individual utility settings, i.e,.

the agents may or may not value the received rewards differently.

Another key aspect in multi-objective multi-agent decision mak-

ing is the choice of optimality criterion. Recent studies on multi-

objective multi-agent settings with individual utilities, and multi-
objective normal-form games (MONFGs) in particular, have yielded

new insights by making the different optimisation criteria –the

scalarised expected returns (SER) and expected scalarised returns

(ESR) optimisation criteria – for these games explicit. Rădulescu et

al. [19] show that under SER, even with known utility functions,

Nash equilibria need not exist, while under ESR they always do.

In this paper, we continue this line of work by explicitly looking

at whether equilibria under one of the optimality criteria transfer

over to the other or not, and under which conditions. We prove by

construction that when the game has at least one NE under both SER

and ESR, the amount of equilibria under SER and ESR can still differ,

and that none of these equilibria need be an equilibrium under both

criteria at the same time. Furthermore, we analyse whether pure

strategy NE persist from the ESR criterion to the SER criterion and

vice versa. Here, we formally show that pure strategy NE under SER

must necessarily also be NE under ESR, while the same does not

hold the other way around. If we make the additional assumption

that all utility functions that are used in the game are convex, pure

strategy NE do persist from ESR to SER.

It is our hope that these properties and their formal proofs will

contribute to novel algorithms of MONFGs in the future, and make

the MONFG more widely used as a model for real-world applica-

tions.

MODeM positioning
We position this paper with respect to the multi-objective multi-

agent decision making field [18]. Specifically, we study settings

with multiple agents with either team or individual rewards and

individual utility, i.e., even if the agents receive the same reward

vectors, they may value these vectors differently. Furthermore, we

take the perspective of finding stable solutions, i.e., Nash equilibria.

We allow for stochastic strategies unless otherwise indicated.

http://modem2021.cs.nuigalway.ie


2 BACKGROUND
In this section, we discuss the necessary background. We start by

defining MONFGs and utility functions. We then move to explain

multi-objective optimisation criteria and the impact on possible

solutions.

2.1 Multi-Objective Normal-Form Games
A Multi-Objective Normal-Form Game (MONFG) [3] is similar to a

(single-objective) normal-form game in all but one aspect: the payoff

received by the agents is not a scalar value, but rather a vector of

payoffs. In these payoff vectors, each element in the vector then

corresponds to the value of a different objective. We can formally

define an MONFG as follows:

Definition 2.1 (Multi-objective normal-form game). A (finite, n-

person) multi-objective normal-form game is a tuple (𝑁,A,𝒑) with
𝑛 ≥ 2 and 𝑑 ≥ 2 objectives, where:

• 𝑁 is a finite set of 𝑛 players, indexed by 𝑖;

• A = 𝐴1×· · ·×𝐴𝑛 , where𝐴𝑖 is a finite set of actions available

to player 𝑖 . Each vector 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ A is called an

action profile;

• 𝒑 = (𝒑1, . . . ,𝒑𝒏) where 𝒑𝒊 : 𝐴𝑖 → R𝑑 is the vectorial payoff

of player 𝑖 , given an action profile.

In this paper, we follow a utility-based approach [16]. In this

approach, each agent 𝑖 derives a utility from the payoff vector by

applying their own scalarisation function, called the utility function

𝑢𝑖 : R
𝑑 → R, to this vector. A common simple example of a utility

function is a linear utility-function which simply assigns a weight

𝑤𝑜 ∈ [0, 1] to each objective 𝑜 , i.e., 𝑢𝑖 (p) = w · p. In practice

however, utility functions often are non-linear, for example because

they have interaction components between the objectives, or have

decreasing additional utility as the amount of payoff in an objective

increases.

In general, we assume that each utility function is at least mono-

tonically increasing in all objectives, which intuitively means that

an agent will always prefer more of any objective over less given

equal payoff values for the other objectives:

(∀𝑜, 𝑝𝜋𝑜 ≥ 𝑝𝜋
′

𝑜 ) =⇒ 𝑢 (𝒑𝜋 ) ≥ 𝑢 (𝒑𝜋 ′
) (1)

with two policies 𝜋 and 𝜋 ′
. While this definition of utility seems

straightforward, it does leave the question about what the agent

should optimise for. Specifically, do we want to compute the util-

ity over the expected payoff, or apply the utility function to the

payoffs directly. When we want to optimise for the utility of a sin-

gle play of a MONFG, we apply the utility function to the payoff

vectors directly, resulting in the expected scalarised returns (ESR)

optimisation criterion [7, 15, 19]:

𝑝𝑢,𝑖 = E
[
𝑢
(
𝒑𝝅
𝑖

) ]
(2)

with 𝑝𝑢,𝑖 the expected utility for agent 𝑖 with utility function 𝑢 and

𝒑𝝅
𝑖
the payoff vector for agent 𝑖 under the joint strategy 𝝅 .
Alternatively, it is possible that the agent cares about optimising

for the utility it can derive from several plays of the game, in which

case we first calculate the expectation over the payoff vectors before

applying the utility function. This is called the scalarised expected

returns (SER) criterion[16, 19]:

𝑝𝑢,𝑖 = 𝑢
(
E
[
𝒑𝝅
𝑖

] )
(3)

where 𝑝𝑢,𝑖 is now the utility of the expected payoff vector.

As a concrete illustration to show the differences between the

ESR and SER optimisation criteria, consider treatments for a medi-

cal condition. There are multiple objectives in this setting, such as

maximising the probability of a cure, minimising side-effects, and

minimising costs. In this example, a patient might have very differ-

ent utility for a 50 percent chance of a cure, but with side-effects

and 50 percent no effects whatsoever, than for the same 50 percent

chance of a cure without any side effects and 50 percent chance of

side-effects without a cure (i.e., their preferred optimisation crite-

rion is ESR). This may stand in contrast to the distributors of the

means (such as medicines) for the treatment, who might mainly

present the averages (i.e., according to the SER criterion). Therefore,

the researchers that aim to optimise the treatment are faced with

the difficult choice of whether to optimise for the average utility of

each treatment outcome (i.e., ESR) or attempting to optimise the

utility for the average outcome (i.e., SER); as this can result in very

different treatment plans. The choice between these optimisation

criteria is thus important to consider, as it has also been shown that

ESR and SER are not equivalent under non-linear utility functions

[19]. This work further showed that in stateless settings ESR can

be reduced to a single-objective problem when the utility functions

are known, implying that regular techniques can be used to solve

such problems. The SER criterion on the other hand cannot easily

be solved by traditional methods and has been understudied thus

far.

2.2 Solution Concepts
Game-theoretic equilibria – such as the well-known solution con-

cept of the Nash equilibrium [14] – determine a set of outcomes

in strategic interactions from which players have no incentives to

deviate. When we adapt the original single-objective formulation of

Nash equilibria (NE) to multi-objective games under SER we obtain

the following definition [18]:

Definition 2.2 (Nash equilibrium for scalarised expected returns).
A joint policy 𝝅𝑁𝐸

leads to a Nash equilibrium under the scalarised

expected returns criterion if for each agent 𝑖 ∈ 1, · · · , 𝑛 and for and

all alternative policies 𝜋𝑖 ∈ Π𝑖 :

𝑢𝑖

(
E𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
E𝒑𝑖

(
𝜋𝑖 , 𝝅

𝑁𝐸
−𝑖

))
i.e. 𝝅𝑁𝐸

is a Nash equilibrium under SER if no agent can increase

the utility of its expected payoffs by deviating unilaterally from 𝝅𝑁𝐸
.

This definition is similar to the definition of a NE in a single-

objective NFG. We must note that although every single-objective

NFG has at least one NE, it has been proven that in MONFGs

under SER, Nash equilibria need not exist [19]. This is because

the expectation over payoff vectors is computed before the utility

function is applied, leading to more freedom for the agents to obtain

better results in expectation. Please see [18] for an example and

formal proof that NE may not exist in MONFGs under SER.

The same problem, i.e., the possible non-existence of NE, does

not exist under ESR.



Definition 2.3 (Nash equilibrium for expected scalarised returns).
A joint policy 𝝅𝑁𝐸

is a Nash equilibrium in a MONFG under ESR

if for all players 𝑖 ∈ {1, ..., 𝑁 } and all alternative policies 𝜋𝑖 ∈ Π𝑖 :

E𝑢𝑖

(
p𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ E𝑢𝑖
(
p𝑖

(
𝜋𝑖 , 𝝅

𝑁𝐸
−𝑖

))
i.e. 𝝅𝑁𝐸

is a Nash equilibrium under ESR if no agent can increase

the expected utility of its payoffs by deviating unilaterally from 𝝅𝑁𝐸
.

We can see that under ESR, as in single-objective NFGs, an NE does

always exist, because the utility functions are applied to the payoff

vectors before the expectation. Therefore, if the utility functions

are known, these can be used to scalarise the MONFG into an

equivalent single-objective NFG, for which the existence of NE is

known.

An open question that remains is in what cases NEs do exist

under SER and if they do, whether a Nash equilibrium under SER

is also a Nash equilibrium under ESR, and vice versa, and under

which conditions.

3 THE EXISTENCE OF NASH EQUILIBRIA
UNDER BOTH ESR AND SER

Single-objective normal-form games [14] have been a popularmodel

for a long time. As a consequence, much is known about them,

including the fact that each NFG must have at least one mixed strat-

egy NE. The study of multi-objective NFGs on the other hand, and

specifically using a utility-based approach, has received much less

attention. As is the case with single-agent multi-objective models,

work on MONFGs has been fragmented, as different assumptions

about the setting inwhich this model is used can lead to vastly differ-

ent outcomes. Recently however, with a survey on multi-objective

multi-agent decision making [18], attention has been drawn to the

fact that the two optimisation criteria – ESR and SER – are not

equivalent, and a taxonomy has been offered on the basis of payoffs,

utility and the type of desired outcomes.

In this paper we focus on individual utility, i.e., even if agents

receive the same payoff vector they may value this payoff vector

differently. Furthermore, we assume that no social welfare mecha-

nism is employed, and that we are looking for stable outcomes in

settings with self-interested agents. For this setting, in MONFGs, it

has been shown recently that under SER no NE need necessarily

exist [19]. We build upon this work by providing a further study of

the existence of NE in MONFGs under both optimisation criteria.

In this section, we aim to show that the total number of NE under

SER and under ESR if both have at least one NE need not be equal

(Theorem 3.1) and that no NE need be shared between the two

different optimisation criteria (Theorem 3.2).

Theorem 3.1. In a (finite, n-person) multi-objective normal-form
game with at least one Nash equilibrium under both criteria, the size
of the sets of Nash equilibria under the scalarised expected returns
criterion and under the expected scalarised returns criterion need not
be equal.

Proof. We can prove this theorem by constructing a MONFG

that has this exact property. The MONFG we use for this purpose

can be seen in Table 1. We show next to this MONFG, the single-

objective NFG resulting from directly applying the following utility

function to the payoffs, assuming that both agents use this same

utility function under ESR:

𝑢 (𝑝1, 𝑝2) = 0.1 ∗ 𝑝1 +𝑚𝑎𝑥 (0, 𝑝1) ∗𝑚𝑎𝑥 (0, 𝑝2) (4)

A B

A (1, 0); (1, 0) (0, 1); (0, 1)

B (0, 1); (0, 1) (-10, 0), (-10, 0)

(a) The multi-objective reward vectors.

A B

A 0.1; 0.1 0; 0

B 0; 0 -1; -1

(b) The ESR utility for both agents.

Table 1: A MONFG with team vector-valued payoffs (top),
and (bottom) the scalarised single-objective NFG with indi-
vidual rewards resulting from applying the utility function
in Equation 4 directly to the payoff vectors (as per ESR) to
the upper MONFG for both agents. This MONFG shows by
construction the two properties in Theorem 3.1 and 3.2. The
highlighted cell is a pure Nash equilibrium.

Let us first show the NE in the MONFG under ESR. We do this

by first applying the utility functions for each agent – which in this

case happens to be the same – directly to the payoff vectors in the

MONFG, resulting in the single-objective NFG in Table 1b. We then

observe that only the pure strategy profile (A, A) results in utilities

above 0 for both agents. As such, there is no incentive for agents to

play a mixed strategy when the other agent plays A at least part

of the time, leading to the pure strategy NE of (A, A). Additionally,

(B, B) is not a NE, as there is an incentive for either agent to play

A, which increases their utility. This then again leads both agents

to adapt their strategies to the NE of (A, A), making it the only NE

of the MONFG under ESR.

Next, we discuss the NE for the MONFG under SER (1a). First

note that the pure strategy NE of (A, A) under ESR is not a NE

under SER. To see this, observe that when one agent plays A de-

terministically, the best response for the other agent is to play a

mixed strategy with probability
11

20
for action A and probability

9

20
for action B. This results in an expected return of ( 11

20
, 9

20
) and

a utility of 0.1 · 11
20

+ 11

20
· 9

20
= 0.3025 for both agents. In fact, this

constitutes a NE under SER for this game, as no agent has an in-

centive to deviate from this strategy. A second NE occurs when

the agents switch strategies, resulting in the same payoffs. Please

note that both agents receive the same expected payoff vectors, and

apply the same utility function to these. We can also show that the

pure strategy (B, B) is not a NE, as this can be improved upon by

either agent deterministically playing A. As such, the MONFG in

Table 1 has at least two mixed strategy NE under SER and no pure

strategy NE.

In this MONFG, both the game under SER and ESR have NE.

However, we can see that they have a different number of NE,

proving Theorem 3.1. □



Our second finding pertaining to Nash equilibria in MONFGs

states that when both SER and ESR have a Nash equilibrium, no

NE must necessarily be shared. We formalise this in Theorem 3.2.

Theorem 3.2. In a (finite, n-person) multi-objective normal-form
game with at least one Nash equilibrium under both criteria, the set of
Nash equilibria under the scalarised expected returns criterion and the
set of Nash equilibria under the expected scalarised returns criterion
may be disjoint.

Proof. Theorem 3.2 can be shown by using the same example

MONFG of Table 1, and the NE already mentioned in the proof for

Theorem 3.1. It is clear from that in this example no joint strategy

is a Nash equilibrium under both SER and ESR. □

4 PURE STRATEGY NASH EQUILIBRIA
As previously noted, SER and ESR are not equivalent in general and

no Nash equilibrium need necessarily exist under SER [19]. Further-

more, we have proven in the previous section that even when both

under SER and under ESR there are in fact Nash equilibria, it can

still be that there is no joint strategy that is an NE under both SER

and ESR. One important open question that remains however is

whether and under which circumstances Nash equilibria can persist

under both criteria.

In this section, we first show that a pure strategy Nash equilib-

rium under SER must always be a pure strategy Nash equilibrium

under ESR as well. Furthermore, we show that the inverse does

not hold by providing a counter example. However, we show that

adding the assumption that all utility functions in the MONFG are

convex does ensure that pure strategy NE under ESR are also NE

under SER. Proving these equivalence relations is of importance

as it means that approaches to calculating NE under one criterion

could potentially be applied to the other criterion as well. Equiv-

alence relations from ESR to SER in specific could be extremely

useful as a MONFG under ESR can be reduced to a single-objective

NFG for which there are several well-performing algorithms that

are able to calculate one or all NE in the game [6, 9, 11].

In order to show that a pure strategy NE under SER must nec-

essarily be a pure strategy NE under ESR, we first introduce a

necessary concept in Lemma 4.1. This lemma states that the utility

of a pure strategy profile under SER is the same as the utility of

that pure strategy profile under ESR.

Lemma 4.1 (Utility of a pure strategy). Given a pure strategy
profile in a (finite, n-person) multi-objective normal-form game, the
expectation of the payoff will always be the observed payoff, as the
expectation of a constant is equal to that constant:

E[𝒑] = 𝒑

and given a utility function 𝑢, the expected utility will also equal
the observed utility by the same reasoning

E[𝑢 (𝒑)] = 𝑢 (𝒑)

We can thus say that for a pure strategy profile, the utility of a
payoff under SER equals the utility under ESR:

𝑢 (E[𝒑]) = 𝑢 (𝒑) = E[𝑢 (𝒑)]

Given this lemma, we can now define the first theorem of this

section which states that a pure strategy Nash equilibrium under

SER, must always be a pure Nash equilibrium under ESR as well.

Theorem 4.2. In a (finite, n-person) multi-objective normal-form
game, a pure strategy Nash equilibrium under the scalarised expected
returns criterion must necessarily also be a Nash equilibrium under
the expected scalarised returns criterion.

Proof. Given a pure strategy Nash equilibrium under SER 𝝅𝑵𝑬
,

we can say that:

𝑢𝑖

(
E𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
E𝒑𝑖

(
𝜋𝑖 , 𝝅

𝑁𝐸
−𝑖

))
⇐⇒ 𝑢𝑖

(
𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
E𝒑𝑖

(
𝜋𝑖 , 𝝅

𝑁𝐸
−𝑖

))
=⇒ ∀𝑎 ∈ 𝐴𝑖 : 𝑢𝑖

(
𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ 𝑢𝑖

(
𝒑𝑖

(
𝑎, 𝝅𝑁𝐸

−𝑖
))

⇐⇒ 𝑢𝑖

(
𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ max

𝜶

∑
𝑎∈𝐴𝑖

𝛼𝑎𝑢𝑖

(
𝒑𝑖

(
𝑎, 𝝅𝑁𝐸

−𝑖
))

⇐⇒ E𝑢𝑖

(
𝒑𝑖

(
𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖
))

≥ E𝑢𝑖
(
𝒑𝑖

(
𝜋𝑖 , 𝝅

𝑁𝐸
−𝑖

))
⇐⇒ A pure Nash equilibrium under ESR

□

The proof starts with the general definition of a pure strategy

Nash equilibrium under SER and removes the expected values

where possible in line two. In line three, we remark that if the

pure strategy profile is an NE, it must necessarily also be better

than unilaterally playing another pure strategy. In line four, this

leads us to state that the utility of the pure strategy NE is greater or

equal to the optimal stochastic mixture of the utilities of the other

pure strategies. In line five, we can freely introduce the expected

value again in the left hand side of the inequality and rewrite the

right hand side such that it now reflects the expected scalarised

returns. This final inequality is also the definition of a Nash equilib-

rium under ESR. Given this positive result, it is alluring to believe

that the inverse, so going from ESR to SER, would also hold. How-

ever, this is not actually the case as we can only guarantee that the

utility of a pure strategy profile is greater or equal to the optimal

stochastic mixture of scalar utilities. We can not guarantee that it is

better than the utility of the optimal stochastic mixture of reward

vectors.

Theorem 4.3. In a (finite, n-person) multi-objective normal-form
game, a pure strategy Nash equilibrium under the expected scalarised
returns criterion need not also be a Nash equilibrium under the
scalarised expected returns criterion.

Proof. We show this theorem formally by using the sameMONFG

and utility functions as presented in the previous section in Table

1a. Recall that in this game, there was a pure NE under ESR but no

pure NE under SER. □

We add that an additional assumption can be made to remedy

this negative result. Concretely, by making the assumption that all

utility functions used by the players in the game are convex, we

are still able to show that a pure strategy NE under ESR, must also

be a NE under SER.



0

Figure 1: An example of a convex function. The dotted line
denotes the fact that the line segment between any two
points lies above the graph between them.

Theorem 4.4. In a (finite, n-person) multi-objective normal-form
game where all player utility functions are convex, a pure strategy
Nash equilibrium under the expected scalarised returns criterion must
necessarily also be a Nash equilibrium under the scalarised expected
returns criterion.

We provide a formal definition of a convex function below. In

simple terms, a convex function can be defined as a function for

which the line segment between any two points lies above the

graph between these two points. We show a visual example of such

a function in Figure 1.

Definition 4.5. A function 𝑓 : R𝑛 → R is convex if its domain is

a convex set and for all 𝒙1, 𝒙2 in its domain, and all 𝑡 ∈ [0, 1], we
have: 𝑓 (𝑡𝒙1 + (1 − 𝑡)𝒙2) ≤ 𝑡 𝑓 (𝒙1) + (1 − 𝑡) 𝑓 (𝒙2)

We can apply this definition to highlight that the utility functions

used to show Theorem 4.3 are not convex. If we take for example

𝒙1 = (1, 0), 𝒙2 = (0, 1) and 𝑡 = 0.5, then we get 𝑓 ((0.5, 0.5)) =

0.05+0.25 = 0.3 for the left hand side and 0.5𝑓 ((1, 0))+0.5𝑓 ((0, 1)) =
0.05 + 0 = 0.05 for the right hand side. It is clear then that this is

not a convex utility function, as 0.3 is larger than 0.05.

Proof. Given Jensen’s inequality, we know that if 𝑢𝑖 is convex:

E [𝑢𝑖 (𝒑𝑖 (𝝅))] ≥ 𝑢𝑖 (E [𝒑𝑖 (𝝅)])

Then if we have a pure Nash equilibrium under ESR and if 𝑢𝑖 is

convex for every player 𝑖:

E[𝑢𝑖 (𝒑(𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖 ))] ≥ E[𝑢𝑖 (𝒑(𝜋𝑖 , 𝝅𝑁𝐸
−𝑖 ))]

=⇒ 𝑢𝑖 (E[𝒑(𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖 )]) ≥ E[𝑢𝑖 (𝒑(𝜋𝑖 , 𝝅𝑁𝐸
−𝑖 ))]

=⇒ 𝑢𝑖 (E[𝒑(𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖 )]) ≥ E[𝑢𝑖 (𝒑(𝜋𝑖 , 𝝅𝑁𝐸
−𝑖 ))]

≥ 𝑢𝑖 (E[𝒑(𝜋𝑖 , 𝝅𝑁𝐸
−𝑖 )])

=⇒ 𝑢𝑖 (E[𝒑(𝜋𝑁𝐸
𝑖 , 𝝅𝑁𝐸

−𝑖 )]) ≥ 𝑢𝑖 (E[𝒑(𝜋𝑖 , 𝝅𝑁𝐸
−𝑖 )])

=⇒ A pure Nash equilibrium under SER

□

This proof first introduces Jensen’s inequality [10] to show that

when all utility functions are convex, the expected scalarised re-

turns are always greater or equal to the scalarised expected returns.

In the first line we write the definition of a NE under ESR. We then

note that when the NE is a pure strategy profile, we can place the

expectation inside the utility as it is equal. In the third and fourth

line, we introduce a new element to the inequality by using Jensens

formula. Lastly, we remove the inner part of the inequality. By

doing this, we have arrived at the definition of a NE under SER,

proving our statement.

5 RELATEDWORK
Multi-objective games (also known as multicriteria games in the

literature) were introduces by Blackwell et al. [4] and have been

discussed extensively in the literature throughout the years. We

highlight below a few of these works, together with the difference

in perspective in comparison to our approach.

A lot of previous work in multi-objective games considers the

case in which agents do not know their utility-function, and thus

define utility-function agnostic equilibria. For example, Shapley

and Rigby [20] extend and characterise the set of mixed-strategy ag-

nostic Nash equilibria for multicriteria two-person zero-sum games

for linear utility functions. Important here to note is their remark

that if the utility functions differ, the scalarised game (implicitly

assuming ESR) can possibly be no longer zero-sum.

Bergstresser and Yu [2] bring up the idea that utility functions

could also be non-linear. However, in their practical analysis, they

only consider linear utility functions and apply the ESR criterion

to obtain the resulting trade-off game and corresponding solution

points.

Finally, Lozovanu et al. [12] formulate an algorithm for finding

Pareto-Nash equilibria in multi-objective non-cooperative games.

More precisely, for every linear utility function for which the

weights sum to one, they compute the trade-off game (i.e., implicitly

assume the ESR criterion), then find its NE.

Consequently, given the use of linear utility functions, there was

no distinction to be made between the ESR and SER optimisation

criteria in the game theory literature. Rădulescu et al. [19] made the

choice between an ESR and SER perspective explicit, and showed

that this choice has profound consequences on the set of Nash

and correlated equilibria [1] in MONFGs, when considering non-

linear utility functions. In this paper, we have continued this line

of work by explicitly looking at whether equilibria under one of

the optimality criteria transfer over to the other or not, and under

which conditions.

6 CONCLUSIONS
In this paper, we have analysed Nash Equilibria (NE) in Multi-
Objective Normal-Form Games (MONFGs), under two optimality

criteria: scalarised expected returns (SER), and expected scalarised
returns (ESR). Specifically, we have shown five properties of NE

under ESR compared to NE under SER.

We have constructed an example to show that the sets of Nash

equilibria under ESR and SER for the same MONFG may be disjoint.



From this same example, we further observe that the size of these

sets of NE may differ as well.

We subsequently take a look at pure strategy NE. Firstly, we

have shown that a pure strategy NE under SER must necessarily

also be an NE under ESR. Secondly we have shown that the reverse

does not hold, i.e., a pure strategy NE under ESR need not be an NE

under SER. Thirdly, we have shown that if we restrict the utility

functions of the agents to convex functions only, the pure strategy

NE under ESR do transfer over to SER. Specifically, given that the

utility functions of all agents in an MONFG are convex, a pure

strategy NE under ESR must necessarily also be an NE under SER.

It is our hope that these properties may form the basis of algo-

rithms to efficiently identify NE in MONFGs. In future work, we

aim to construct such algorithms.

We would also like to mention a couple directions we believe to

be promising for future theoretical work. Firstly, recently we have

shown that by allowing agents to communicate preferred actions or

strategies, cyclic Nash equilibria can be reached in MONFGs [17].

We hope to contribute theoretical properties of cyclic equilibria

as well. Secondly, we have assumed in our definitions of Nash

equilibria that both agents follow the same optimality criterion

(ESR or SER). However, this need not be the case in practice. Thirdly,

we have restricted the class of utility functions to prove our final

theorem. It would be interesting to seewhether different restrictions

on the utility functions, or indeed restrictions on the payoff vectors,

would lead to other useful properties.
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