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Abstract

When looking out into the real world, it is clear that many scenarios contain multiple agents
that are trying to accomplish various objectives. In order to deploy autonomous agents that
can provide added value in such environments, it is therefore imperative that we gain a clear
understanding of decision making in them. In this work we study such systems, known as multi-
objective multi-agent systems. Concretely, we look at Multi-Objective Normal-Form Games
(MONFGs), which are deterministic stateless games in which the agents receive a vectorial
payoff relating to the range of objectives, rather than a single scalar reward, based on their
joint-actions. For the first contributions of this thesis, we take a theoretical approach and prove
five novel properties relating to Nash equilibria in MONFGs that were not previously considered
in the literature. For our second contribution, we take a reinforcement learning approach and
study agents who are unaware of the dynamics of the underlying game. These agents must
learn to coordinate their strategies by repeatedly playing a base MONFG. For this purpose,
we design a collection of novel learning algorithms, allowing agents to communicate preferred
actions or strategies. We provide algorithms both for cooperative as well as self-interested agents
and perform an extensive empirical validation of them. We find that agents in cooperative
settings receive a moderate boost in learning rates when using communication compared to simple
independent learners without communication. This result appears consistent with work in single-
objective reinforcement learning. In our self-interested settings, we further demonstrate the first
emergence of cyclic Nash equilibria in repeated MONFGs. We also study in detail whether agents
in our set of benchmark games benefit from these novel communication approaches compared
to simple independent learning. We find that in games with Nash equilibria, agents appear
indifferent to communication as the benefits are not substantial enough in the limited MONFGs
that we consider. On the other hand, we identify that in games without Nash equilibria, some
level of communication does benefit the agents. We attribute this to the fact that it helps them
coordinate on converging to a compromise strategy.
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Chapter 1

Introduction

In recent years, Artificial Intelligence (AI) has been gaining traction in various industries, sec-
tors and research fields. This development has grabbed the attention of businesses, with a recent
global survey by McKinsey showing that 50% of respondents reported adoption of AI in their
organisation (Balakrishnan et al., 2020). Moreover, it has seen regulators introducing new leg-
islation regarding responsible design and use of AI (European Commission, 2021) and has even
made it into the hands of the general public, with almost everyone using at least some sort of
AI in their daily lives.

A field that has seen great success in studying AI is Reinforcement Learning (RL). RL can
intuitively be understood as learning through trial-and-error, similar to how humans learn new
skills. Research in this field has been at the forefront of breakthroughs in many different areas.
From being used in the design of self-driving vehicles (Kendall et al., 2019) and the autonomous
navigation of stratospheric balloons (Bellemare et al., 2020) to being the first computer program
to beat a human professional in the game of Go (Silver et al., 2016), RL has fundamentally
changed the way specific problems can get solved. The field also has made impressive strides in
studying systems where multiple agents learn in the same environment, aptly named multi-agent
reinforcement learning. More recently, RL has also begun considering settings in which an agent
has multiple objectives. This field, called multi-objective reinforcement learning, attempts to find
optimal trade-offs between multiple, possibly conflicting, objectives through learning (Rădulescu,
Mannion, Roijers, et al., 2020).

For AI to tackle all the different problems present in the real world, many essential factors
need to be considered. In this work, we focus our attention on two of these. First, almost all en-
vironments have multiple independent actors operating in them at the same time and influencing
each other’s behaviour. Second, almost all actors have multiple and often conflicting objectives
they are interested in. Throughout most of the history in RL research, the field has focused
on a simplified world-view often consisting of only a single actor optimising for a single reward.
As previously stated, attempts have been made at studying settings in which multiple agents
learn in the same environment and settings in which an agent learns trade-offs between multiple
objectives. However, the field merging these two settings in a concise multi-objective multi-agent
approach is still in its infancy and has much room left to grow.

One of the fundamental tools we humans have in our arsenal for coming to adequate trade-
offs and cooperating with others is communication. When working in teams, we communicate
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2 CHAPTER 1. INTRODUCTION

to establish an efficient way of cooperating. When competing over certain aspects, we often still
attempt communication as a way to find compromises. Without communication, our behaviour
will result in worse outcomes, even for example when faced with disastrous consequences of
climate change (Tavoni et al., 2011). Throughout the years, we have gotten comfortable com-
municating with computers as well. We talk to our smartphones and tablets as a way to let
them know what we want. Furthermore, studies have shown that cooperation increases when
people choose to let an artificial agent play actions on their behalf (Domingos et al., 2021). The
benefits of communication appear near endless, so why should learning agents not communicate
with each other? In this thesis, we explore reinforcement learning approaches allowing agents
to communicate preferred actions or strategies for solving multi-objective multi-agent environ-
ments. Furthermore, we take a game-theoretic perspective and formally show several theoretical
properties of these environments that have not previously been shown.

We note that a significant part of the contributions with regards to communication in multi-
objective multi-agent systems has been published in Röpke et al., 2021.

1.1 Context

We briefly touched upon the fact that isolated work exists both on the subject of learning in
multi-agent settings as well as learning for multiple objectives. On the one hand, the former field
has shown exciting approaches to problems such as decision making in smart electric grids (Peters
et al., 2013) and wireless sensor networks (Mihaylov et al., 2010). On the other hand, researchers
have applied advances in the latter field to equally interesting applications in water management
(Castelletti et al., 2011) and medical treatment (Jalalimanesh et al., 2017). Although the re-
search community has studied multi-objective multi-agent settings for years, there are still a
number of important open questions and most of the field remains fragmented (Rădulescu, Man-
nion, Roijers, et al., 2020). This lack of research does not reflect the true prevalence of real-world
multi-objective multi-agent situations, highlighting the need for additional work on this subject.
We provide two motivating examples for the applicability of multi-objective multi-agent solutions
in the real world.

Logistical Service Providers

As a first example, take a logistical service provider. This provider has multiple trucks in their
fleet, all hauling different cargo from and to specific destinations. Our service provider is, of
course, interested in optimising the utilisation of the different trucks in their fleet. Given the
need for explicit coordination between these trucks to assign the loads they might carry and plan
the routes they take, this type of problem immediately presents itself as a challenge that could
be solved by using a multi-agent approach. We must however recognise a second element for
the service provider. Namely, there is a whole range of conflicting objectives to consider when
optimising the utilisation of the trucks. They want to deliver all goods as fast as possible to
their destination, with the lowest associated cost and while also minimising carbon emissions to
minimise the strain on the environment. As one can see from this example, a problem such as
this requires a multi-objective multi-agent specific approach to optimise the behaviour for each
agent and all objectives.
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Forming Coalitions

For a second example, we must zoom out and take a broader perspective. Instead of focusing
on a particular business, we aim our attention now to humanity at large. To achieve our goals
in life, people typically form coalitions with others in order to cooperate. Such coalitions are
thus by definition multi-agent. On the other hand, people are seldom interested in one specific
goal. When forming a coalition with others, we probably are more interested in cooperating
with friends or people we deem trustworthy. Additionally, we also want to work together with
the most capable people to maximise our expected results. We might not even care that much
about the actual outcome as long as we feel happy enough. One concrete example that has been
studied in multi-objective coalition formation is the problem of forming teams of scientists to
cooperate on research (Igarashi & Roijers, 2017). In this example, scientists aim to optimise for
two objectives, namely the expected impact and novelty, when writing a paper together. Since
every scientist can have different preferences over these objectives, a multi-objective multi-agent
approach is necessary to form adequate coalitions.

A recent survey paper describing the state-of-the-art in multi-objective multi-agent decision
making has identified a range of open problems (Rădulescu, Mannion, Roijers, et al., 2020).
The first key problem they consider stated that more work is required to study the setting
from a theoretical standpoint and define solutions for agents in these settings. They further
emphasised the need for more algorithmic approaches such that agents could efficiently learn
these solutions. In this thesis, we consider Multi-Objective Normal-Form Games (MONFGs),
which are stateless environments in which the joint action of all agents results in a payoff for the
different objectives (Blackwell, 1954). We first tackle the theoretical open problem and formulate
formal proofs for five properties that have not been previously shown. Additionally, we take
a learning perspective and design novel algorithms involving communication for use in multi-
objective multi-agent settings. Currently, the field of multi-objective multi-agent reinforcement
learning is still in its early stages and there is only a small but growing community of researchers
working on these problems. We believe that the contributions presented in this thesis can provide
valuable insights for future work and hopefully help move research in this field further.

1.2 Problem Definition

The goal of this thesis is twofold. First, we aim to take a game-theoretic perspective to MON-
FGs. In game theory, single-objective normal-form games have been well understood for several
decades. Multi-objective normal-form games on the other hand remain understudied and several
interesting properties have not been formally shown before. Secondly, we wish to investigate
novel learning techniques for agents in a MONFG. Specifically, we allow agents to repeatedly
play a MONFG in order to learn optimal strategies for this game over time. The learning tech-
niques that we study all revolve around the use of communication in different settings, enabling
us to accurately measure and analyse the influences of communication. Concretely, in this work
we aim to answer the following research questions:

• How do equilibrium strategies relate to each other under different optimisation criteria in
MONFGs?

• What impact does communication have on the behaviour of learning agents in these set-
tings?



4 CHAPTER 1. INTRODUCTION

1.3 Thesis Structure

The remainder of this thesis will dive into these research questions in a structured manner. First,
in Chapter 2 we acquaint ourselves with the necessary background, introducing inter-disciplinary
concepts from game theory, multi-agent reinforcement learning, multi-objective reinforcement
learning and finally multi-objective multi-agent reinforcement learning.

Chapter 3 presents the first contributions of this thesis by showcasing several important
theoretical considerations with regards to equilibrium strategies in the setting of MONFGs. We
show formal proofs for five new properties in these games that could provide important insights
for the development of future algorithms.

In Chapter 4 we present the communication approaches we consider in this thesis and show
the novel algorithms that we have devised for learning agents in these settings.

Following this, Chapter 5 details our experimental methodology and presents our results. At
the same time, we present a thorough discussion of our empirical findings and draw interest-
ing parallels between experiments. We first show that agents in cooperative settings obtain a
moderately steeper learning curve. We subsequently identify a novel solution concept, namely
cyclic Nash equilibria, for agents in a self-interested setting. Lastly, we evaluate our communica-
tion approaches via a hierarchical method, enabling agents to independently learn whether they
benefit from communicating or not.

We conclude this thesis in Chapter 6 by presenting a conclusion of the work performed. We
also shift our vision towards possible next steps, presenting compelling ideas for future research.



Chapter 2

Background

This chapter introduces the necessary background in order to comprehend the following sections
of this thesis. In Section 2.1, we start by familiarising ourselves with the game-theoretic aspects
that are used in later chapters. We describe fundamentals such as normal-form games, strategies
and the different solution concepts that are of interest to us. We also give a detailed introduction
to Stackelberg games, which is the game-theoretic model we use in this thesis for allowing agents
to communicate preferred actions or strategies in our multi-objective multi-agent systems. In
Section 2.2, we continue by presenting the multi-agent framework we use in experiments, namely
multi-agent reinforcement learning. In this section, we include relevant settings and algorithms
that are later used in the design of our own systems. After discussing multi-agent reinforcement
learning, we take a closer look at multi-objective reinforcement learning as well in Section 2.3.
This section first clarifies the need for explicitly multi-objective systems and presents in detail
the approach we follow in this work. All of this background information comes together in
Section 2.4, where we define multi-agent multi-objective systems and our reinforcement learning
approach in these systems. We go over the setting we study in this thesis and the solution
concepts that apply to it. Finally, we highlight successful learning approaches for agents in these
systems and discuss relevant related work in the field.

2.1 Game Theory

Game theory is the mathematical study of interaction among independent, self-interested agents
(Leyton-Brown, Kevin and Shoham, 2008). These interactions between agents, also called play-
ers, can be modelled as a game. The field of game theory has existed for decades, coming up
with increasingly difficult and interesting games. For the purpose of this thesis, we will fo-
cus our attention first to normal-form games. We then discuss the strategies of agents in such
games and how different types of strategies can lead to optimal outcomes for all involved agents.
Lastly, we shift our focus to a second type of game, called Stackelberg games, that introduces
the communication methodology that we adopt in this thesis.

2.1.1 Normal-Form Games

A Normal-Form Game (NFG) is a stateless game in which the joint action of all players, also
called action profile, results in a deterministic payoff. Visually, a two player NFG can be expressed
as a matrix where one player plays the row actions and another player the column actions. We
show this with a classical example, namely the prisoner’s dilemma, in Table 2.1.

5



6 CHAPTER 2. BACKGROUND

Cooperate Defect

Cooperate −1,−1 −3, 0

Defect 0,−3 −2,−2

Table 2.1: A matrix representation of the prisoner’s dilemma as a normal-form game. Each cell
holds the payoff for both agents under the corresponding action profile. More information is
given in the text.

In the prisoners dilemma, we assume that two thieves have been arrested by the police and
now face questioning. Upon questioning, both thieves are confronted with the same deal by the
police officers. If the thieves cooperate with each other and refuse to talk to the police, both will
only have to serve one year in prison. If on the other hand, one of the thieves defects and talks
to the police while the other one still refuses, the defector will not have to serve any prison time
and the thief that stayed silent will serve a grand total of three years in prison. In the case that
both prisoners defect, both will have to serve two years in total.

All of this information can be expressed in a simple matrix as an NFG. One player plays
the row actions and another player plays the column actions. We respectively call these players,
player A and player B. The payoff that either agent receives is determined by the joint action
that was taken. As an example, when player A chooses to cooperate, but player B chooses to
defect, player A will receive a payoff of -3 and player B receives a payoff of 0. A formal definition
of a normal-form game is presented below (Leyton-Brown, Kevin and Shoham, 2008):

Definition 2.1.1 (Normal-Form Game). A (finite, n-person) normal-form game is a tuple
(N,A,p), where:

• N is a finite set of n players, indexed by i;

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i. Each vector
a = (a1, . . . , an) ∈ A is called an action profile;

• p = (p1, . . . , pn) where pi : A → R is a real-valued payoff function for player i, given an
action profile

Studying NFGs is compelling, even when considering their relative simplicity. Many of the
key constructs in game theory were first formed with regards to normal-form games and later
extended for use in other games with more intricate dynamics. Furthermore, it can be proven
that multiple other kinds of games can be reduced to NFGs as for example extensive-form games
and Bayesian games (Leyton-Brown, Kevin and Shoham, 2008).

2.1.2 Strategies

We can define the choices an agent makes in a specific game as their strategy. We can specify
two different types of strategies. On the one hand we have pure strategies, in which a player
chooses a single action and plays this. When each player in the game has a pure strategy, we
call this a pure strategy profile. The second type of strategy a player might use is what is called
a mixed strategy. Playing a mixed strategy implies that the agent includes at least some level of
randomness in their action selection. In a mixed strategy, each action is assigned a probability
and players choose their actions according to the probability distribution over of the actions. We
can formally define this as follows (Leyton-Brown, Kevin and Shoham, 2008):
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Definition 2.1.2 (Mixed strategy). Let (N,A,p) be a normal-form game, and for any set X
let Π(X) be the set of all probability distributions over X. Then the set of mixed strategies for
player i is Si = Π(Ai).

Playing a mixed strategy might appear counter-intuitive at first. As an illustration of the
applicability of mixed strategies, picture a game of rock-paper-scissors. If one player is always
playing rocks, the other player will necessarily play paper so that they always win. In this case,
it makes more sense for both players to play all options with an equal probability, as any other
strategy can be abused by the opponent. An interesting point to note is that a pure strategy is
simply the special case of a mixed strategy where one action is assigned a probability of one and
every other action a probability of zero.

In the case of pure strategies, the payoff of a joint action can easily be read from the matrix
representation. However, in the case of mixed strategies, it is not as simple. We have to introduce
the notion of expected payoff, to account for the probabilistic nature of the strategies. Intuitively,
we can calculate the expected payoff for each player by multiplying their payoff for each joint
action with the probability for this joint action to occur. We define the expected payoff of a mixed
strategy below (Leyton-Brown, Kevin and Shoham, 2008). Note that we denote the probability
of playing action ai under mixed strategy si as si(ai).

Definition 2.1.3 (Expected payoff of a mixed strategy). Given a normal-form game (N,A,p),
the expected payoff pi for player i of the mixed strategy profile s = (s1, . . . , sn) is defined as

pi(s) =
∑
a∈A

pi(a)

n∏
j=1

sj(aj)

2.1.3 Solution Concepts

In multi-agent settings, it can be difficult to define an optimal strategy, because a player’s optimal
strategy also depends on the strategy of all other players. As an illustration, we can not say
that playing a uniform mixed strategy in the classical rock-paper-scissors game is the optimal
strategy when the other player always plays rock. However, when both players play a uniform
mixed strategy, we arrive at an optimal outcome for both players. In order to describe meaningful
outcomes, game theory defines different solution concepts (Leyton-Brown, Kevin and Shoham,
2008). We introduce two solution concepts that are crucial for the remainder of this work.

Pareto Optimality

The first solution concept that is important to discuss is the notion of Pareto optimality, otherwise
called Pareto efficiency. We say that agents reach Pareto optimality, when no agent can increase
their payoff without decreasing the payoff for at least one other agent. The concept of Pareto
optimality is also closely related to Pareto dominance. We say that a strategy profile Pareto
dominates another strategy profile, when it results for all players in at least the same payoff and
for some players a better payoff. Formally, this can be defined as follows (Leyton-Brown, Kevin
and Shoham, 2008):

Definition 2.1.4 (Pareto dominance). Strategy profile s Pareto dominates strategy profile s′ if
for all i ∈ N, pi(s) ≥ pi(s′), and there exists some j ∈ N for which pj(s) > pj(s

′).

We can define Pareto optimality in terms of Pareto dominance, by noting the fact that if a
strategy is Pareto optimal, this necessarily means that no other strategy Pareto dominates it.
Formally (Leyton-Brown, Kevin and Shoham, 2008):
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Definition 2.1.5 (Pareto optimality). Strategy profile s is Pareto optimal, or strictly Pareto
efficient, if there does not exist another strategy profile s′ ∈ S that Pareto dominates s.

Nash Equilibrium

Arguably the most famous of all solution concepts is what is called the Nash Equilibrium (NE)
which was first described by mathematician John Nash (Nash, 1951). In his work, he showed
that every finite game must have at least one mixed strategy NE. The concept of a NE depends
on the notion of a best response to the strategy of other players. A player’s best response is
then defined as a mixed strategy that will result in the highest possible expected payoff out
of all mixed strategies, given the strategies of the other players. A best response need not be
unique, but no other mixed strategies may exist that will lead to a higher expected payoff,
otherwise this strategy would be the best response. For the purpose of notation, we define
s−i = (s1, · · · , si−1, si+1, · · · , sn) as the strategy profile s without the strategy of player i, so
that we may write s = (si, s−i). A formal definition of a best response then goes as follows
(Leyton-Brown, Kevin and Shoham, 2008):

Definition 2.1.6 (Best Response). Player i’s best response to the strategy profile s−i is a mixed
strategy s∗i ∈ Si such that pi(s

∗
i , s−i) ≥ pi(si, s−i) for all strategies si ∈ Si.

If all players in a game are playing their best response to each others strategies, this would
imply that no player could unilaterally deviate from the joint strategy and improve their payoff.
This mixed strategy profile is then a Nash equilibrium. We formally define the Nash equilibrium
as follows (Leyton-Brown, Kevin and Shoham, 2008):

Definition 2.1.7 (Nash Equilibrium). A strategy profile s = (s1, . . . , sn) is a Nash equilibrium
if, for all agents i, si is a best response to s−i.

To illustrate the concept of a Nash equilibrium, let us again consider the prisoner’s dilemma.
We show the original NFG in Table 2.2, with the Nash equilibrium highlighted.

Cooperate Defect

Cooperate −1,−1 −3, 0

Defect 0,−3 −2,−2

Table 2.2: A matrix representation of the prisoner’s dilemma as a normal-form game. The
highlighted cell represents the Nash equilibrium.

If one player’s strategy is to cooperate, it is always in the other player’s best interest to
defect. However, when one player defects, it is also in the other player’s best interest to defect.
As defecting is always the best response, this implies that the only Nash equilibrium in this case
is for both players to always defect.

It is important to note that each NFG must have at least one mixed strategy NE (Nash,
1951), but it is entirely possible that multiple NE are present in the given game. Moreover, it
is also possible that some NE dominate other NE. As an example, consider the stag hunt game
presented in Table 2.3.

In this game, two hunters must decide which animal to hunt. If both hunters work together,
they are able to catch a stag which results in the highest payoff for both hunters. However, it
is also possible to operate completely autonomous and go for a hare, resulting in a lesser payoff.
When one hunter goes for the stag and one for the hare, the hunter that went for the hare is
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Stag Hare

Stag 4, 4 1, 3

Hare 3, 1 2, 2

Table 2.3: A matrix representation of the stag hunt as a normal-form game. The highlighted
cells represent the pure Nash equilibria.

able to get a good one, while the other hunter is left with barely anything. There are a total
of three NE in this game. The first NE is to both hunt the stag which results in a payoff of 4.
The second NE is for both hunters to go on their own and hunt a hare, resulting in a payoff of
2. The last NE is a mixed strategy of hunting both animals with a probability of 0.5, resulting
in a payoff of 2.5 for both agents. The interesting thing to note here, is that while the strategy
where both hunters go for the hare is a NE, it is also Pareto dominated by the other two NE.
Intuitively, this means that no hunter can unilaterally deviate from their strategy and improve
their payoff and the only way for them to arrive at a better NE is to both change strategies.

2.1.4 Stackelberg Games

A Stackelberg game is a 2-player game in which one player, called the leader, commits to a
strategy that the other agent, called the follower, observes and responds to (Simaan & Cruz,
1973). At a first glance, it might seem counter-intuitive to commit to playing a certain strategy.
It is well known however that committing to an optimal mixed strategy will never result in a
worse outcome than a Nash equilibrium (von Stengel & Zamir, 2010). This stems from the
fact that the leader is always able to commit to a strategy which is part of a Nash equilibrium,
after which the follower has no choice but to also play their strategy from this equilibrium.
Furthermore, it has also been shown that committing to playing a specific strategy can lead to a
better payoff than when not committing (Letchford et al., 2014). As an example of this, consider
the NFG in Table 2.4.

L R

U 1, 1 3, 0

D 0, 0 2, 1

Table 2.4: A normal-form game where the Nash equilibrium in the highlighted cell can be
improved upon for the row player by committing to action D.

This game has one pure Nash equilibrium when no agent has the ability to commit, namely
the row player playing U and the column player playing L with a payoff of 1 for both players.
However, when giving the row player the ability to commit to a strategy, committing to action
D will result in a higher payoff of 2 for them, as the column player is now compelled to play
action R. Moreover, committing to a mixed strategy of playing the actions with probabilities
(0.5 − ε, 0.5 + ε) will still force the column player to play action R and result in an even better
result for the row player with an expected payoff of 2.5 - ε.

Stackelberg games were first introduced to study the behaviour of firms in a duopoly (Von
Stackelberg, 2011), but have since been successfully applied in multiple other areas such as
scheduling (Roughgarden, 2004), energy management (Liu et al., 2017) and security (Sinha et al.,
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2018). Furthermore, the adoption of Stackelberg games for security is one of the most successful
examples of game theory applications in the real world, with a notable example of it being used
in the Los Angeles Airport to determine the strategic random placement of checkpoints and
canine units (Pita et al., 2009).

2.2 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is the field of RL in which multiple agents operate
and learn in a shared environment and provides a learning framework that is based upon research
into game theory (Lanctot et al., 2017; Nowé et al., 2012). Originally, RL concerned itself
with settings that contained a single agent optimising their policy to attain a specific goal in a
stationary environment (Sutton & Barto, 2018). We show the interaction of such an agent in
the environment in Figure 2.1.

Agent

Environment

Action 

Reward 

State 

Figure 2.1: The single agent reinforcement learning setting (Sutton & Barto, 2018)
.

In MARL however, the presence of other agents in the environment introduces non-stationarity,
thereby complicating the learning process. Intuitively, this can be explained due to the fact that
changes in one agent’s policy, called a strategy in game theory, can lead the other agent to also
alter their policy and so on. This concept is known as the moving-target problem and drives
research into multi-agent specific approaches (Tuyls & Weiss, 2012). In this section, we first
specify the mathematical framework that is used in MARL and relate this to our previous sec-
tion on game theory. Next, we discuss several algorithms that will prove to be instrumental in
the design of our own learning methodologies in later chapters. Lastly, we end this section with
a discussion on different reward functions that can be used to induce specific behaviour from the
agents.

2.2.1 Stochastic Games

A Stochastic Game (SG) (Shapley, 1953), also called a Markov Game (Littman, 1994), is a game
theoretic model for representing a multi-agent setting with stochastic state transitions. This
model is well suited to study a wide range of multi-agent decision making problems (Bowling
& Veloso, 2000), since most real-world problems exhibit stateful and stochastic behaviour. In
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the context of this thesis, we focus mainly on learning in an adaptation of NFGs that we will
discuss in Section 2.4.2. Because much work in MARL and many algorithms assume SGs, it still
makes sense to quickly discuss them. We further note that SGs are a superclass of games that
encompasses NFGs. We present a formal definition below Leyton-Brown, Kevin and Shoham,
2008):

Definition 2.2.1 (Stochastic Game). A stochastic game (also known as a Markov game) is a
tuple (S,N,A, T,R), where:

• S is a finite set of states;

• N is a finite set of n players;

• A = A1 × · · · ×An, where Ai is a finite set of actions available to player i;

• T : S ×A× S → [0, 1] is the transition probability function; T (s, a, ŝ) is the probability of
transitioning from state s to state ŝ after action profile a; and

• R = R1, . . . , Rn, where Ri : S ×A× S → R is a real-valued payoff function for player i.

Since this game is a repeated game, we say that at every timestep, players end up in a new
joint state s = 〈si, . . . , sn〉 where s ∈ S. An important thing to note here is that, similar to an
NFG, a player’s payoff does not only depend on their own action, but also on the actions of all
other players. In the context of game theory we defined the manner by which an actor selected
their actions as their strategy. In MARL and RL at large, this is also known as an agents policy
πi : S×Ai → [0, 1] which maps a state and an action to a probability of selecting that particular
action in the state.

2.2.2 Exploration–Exploitation Dilemma

An interesting dilemma that often surfaces in RL and MARL is how to conduct the action
selection process. This dilemma deals with the question of how much the agent should favour
exploiting the knowledge it already has, versus how much it should keep exploring to hopefully
retrieve new valuable information. On the one hand, the agent could always go for the action
that has the highest expected payoff, thus exploiting the information that it has gathered so
far. When doing this however, agents risk the fact that they will never learn the true payoff
of some strategies because of a lack of exploration and possibly play suboptimal policies. To
counter this, the agent could always pick a random action and keep exploring. This approach
has the drawback that it never actually uses the knowledge that is gathered, which defeats the
purpose of learning in the environment in the first place. One possible solution to resolve this
dilemma is by using a technique called ε-greedy action selection, which introduces a trade-off
between exploration and exploitation. Using ε-greedy action selection, we make the commitment
to choose an action a randomly (meaning exploration) with probability ε and greedily (meaning
exploitation) with probability 1− ε (Sutton & Barto, 2018). Formally:

a =

{
random action with probability ε

greedy action otherwise
(2.1)

Another possible approach to handle the exploration-exploitation dilemma is to learn a nu-
merical preference over all actions and use these preferences directly in the action selection
process. We can encode each action a at timestep t in a vector θt, where θt,i is the preference for
action ai at time t. Given these preferences, we can assign a probability of selecting this action,
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relative to their current value. This can be formalised by using a softmax distribution, or more
precisely a Boltzmann distribution (Sutton & Barto, 2018). We show this in Equation 2.2.

π(a|θ) =
eθi∑|A|
j=1 e

θj
(2.2)

Lastly, we wish to mention that there are specific settings where a solution to the exploration-
exploitation dilemma can be built in. An example of this can be found in work on learning
automata that have a built in exploration strategy (Vrancx et al., 2008).

2.2.3 Temporal Difference Learning

Temporal difference (TD) learning is a widely used technique in MARL to learn from experience
over time and further introduces a basis for learning that many other algorithms rely on. In
order to understand TD learning, it is imperative that we first explain two concepts upon which
it heavily relies. The first concept that is used is Monte Carlo simulation. Monte Carlo simulation
uses the law of large numbers to state that the empirical mean is approximately equal to the
expected mean of the distribution if enough independent samples are gathered (Dekking et al.,
2005). Simply put, Monte Carlo methods are ways of solving the reinforcement learning problem
based on averaging sample returns (Sutton & Barto, 2018). Monte Carlo simulation is used in
many different areas such as in this case reinforcement learning, but also in for example climate
change research (New & Hulme, 2000).

The second concept that is used in TD learning is dynamic programming. Dynamic program-
ming is a computational method that builds up complete solutions from previously computed
results in a recursive manner (Bellman, 1957). Just as Monte Carlo simulation, dynamic pro-
gramming is a widely used method that has resulted in many mainstream applications, with for
example Dijkstra’s famous shortest path algorithm (Dijkstra, 1959). TD learning combines these
two concepts by using Monte Carlo simulation to learn from interaction with an environment
and dynamic programming to calculate estimates, based on previous solutions (Sutton & Barto,
2018).

We can use TD learning to learn an estimate of how good each state S is, called a state-value
function V : S → R. TD learning then attempts to learn this target by taking small steps over
time to cover the difference between the current estimates and the observed value of the state.
We show a general update rule used in TD learning in Equation 2.3.

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.3)

Specifically, we start from our current estimate of the state value V (st) and update this by
taking a step with size α, also called a learning rate, towards our target [rt+1 + γV (st+1)− V (st)].
This target is the difference between the observed reward rt+1 and the current value estimate
V (st) plus the value of the next state V (st+1) discounted by γ. In Algorithm 1 we introduce
a simple temporal difference learning algorithm that learns a value function in the environment
given a policy π (Sutton & Barto, 2018). It is crucial to show, since it forms the basis for many
of the future algorithms that we consider in subsequent sections en is also instrumental to the
design of our own algorithms.
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Algorithm 1 The temporal difference learning algorithm

Input: A policy π to evaluate
Initialise a learning rate α ∈ (0, 1]
Initialise V (s) arbitrarily for all s ∈ S, except for the terminal states V (terminal) = 0
for for each episode do

Initialise s
for each step of episode do

Sample an action a from π according to some exploration strategy
Take action a, observe r, s′

V (s)← V (s) + α[rt+1 + γV (st+1)− V (st)]
s← s′

end for
Until s is terminal

end for

2.2.4 Q-Learning

Q-Learning is a well-known algorithm first developed in the context of single-agent RL (Watkins,
1989) and has also been proven to converge in this setting (Watkins & Dayan, 1992). The
Q-Learning algorithm attempts to learn an action-value function which places a value, also
called Q-value, on each action that can be taken in a particular state Q : S × A → R. This
Q-value then denotes an estimate of the long-term reward that will be obtained when taking
an action in a certain state. The Q-values are learned over time through temporal difference
learning and approximate the optimal action-value function q∗ (Sutton & Barto, 2018). This
means that we can derive an optimal policy from these Q-values, simply by each time selecting
the action with the highest value in the current state. We show the Q-learning update rule for
single-agent RL in Equation 2.4.

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.4)

In the update rule, Q(st, at) holds the current best guess for the Q-value in state st and taking
action at. This value will be updated with the temporal difference that is multiplied with the
learning rate α. The temporal difference itself is calculated by taking the obtained reward rt+1,
adding the optimal future reward maxaQ(st+1, a) discounted by γ and finally subtracting the old
estimate for Q. As we can see from this update rule, Q-learning uses the assumption of a greedy
policy to update the Q-values, hence the maxaQ(st+1, a) and does not use the actual policy
for this estimate. This distinction makes Q-learning an off-policy RL algorithm that updates
Q-values independently from the actual policy that is used (Sutton & Barto, 2018). We show
the Q-Learning algorithm in a single-agent setting in Algorithm 2. It is also important to note
that while Q-learning is able to arrive at an optimal policy, at least some level op exploration is
needed to ensure that all Q-values can be accurately learned over time. In the algorithm, this is
accomplished by using an ε-greedy action-selection mechanism.

Important to note here is that while Q-learning was originally designed for use in single-agent
settings, it has also been studied in multi-agent settings. The most straightforward manner
in which this can be done is by simply treating other agents as part of the environment and
independently using Q-learning to estimate an optimal policy (Laurent et al., 2011; Leslie &
Collins, 2005; Tan, 1993). Due to the presence of other learning agents however, this can lead
the environment to lose the stationary property that the convergence proof for Q-learning relies
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Algorithm 2 The Q-learning algorithm

Initialise Q(s, a) arbitrarily
for for each episode do

Initialise s
for each step of episode do

Choose a from s using ε-greedy action selection
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

end for
Until s is terminal

end for

upon. Independent Q-learning thus suffers from the fact that it is not guaranteed to converge in
general and may also converge to suboptimal policies.

2.2.5 Joint Action Learning

Instead of using independent learners in a multi-agent setting that consider others as part of the
environment, we can also explicitly incorporate the other agents in the learning process. One
popular approach is the use of joint-action learning (JAL) (Claus & Boutilier, 1998; Littman,
1994), which attempts to learn values of joint-actions rather than independent actions. This
implies that all actions are observable to the agents. In the simple setting of NFGs, this can be
accomplished by a straightforward extension to the Q-learning algorithm. First, because NFGs
are stateless, we need not consider the optimal action in the next state. This in turn leads to an
update rule as follows:

Q(at, a
′
t)← Q(at, a

′
t) + α [rt+1 −Q(at, a

′
t)] (2.5)

The next step that deserves clarification in JAL is the action selection process. In the MARL
setting, agents can only decide their own actions. However, JAL holds Q-values for joint actions.
This requires agents to form a belief about the strategy of other players, such that they can
accurately select a best response action. We can formulate these beliefs by keeping an empirical
distribution over the opponents actions and using this to calculate expected values for actions.
These expected values can then be used instead of Q-values to select the optimal action. We
show this in Equation 2.6 (Claus & Boutilier, 1998).

EV (ai) =
∑

a−i∈A−i
Q
(
ai ∪ {a−i}

)
Πj 6=iPr

i
a−i[j] (2.6)

There are two important known limitations to JAL. First, it is known that JAL does not
always improve the learned policies, leading independent learners to converge on equally adequate
policies in certain settings (Claus & Boutilier, 1998). A second drawback to JAL is its difficulty
to scale to larger environments with more agents. Because agents now need to learn explicit Q-
values for each joint action, this leads to an exponential growth with the number of agents (Claus
& Boutilier, 1998). This phenomenon is known as the curse of dimensionality and also occurs in
many other facets of reinforcement learning (Busoniu et al., 2008). One approach that has seen
success in tackling this problem is deep reinforcement learning, which can avoid the exponential
growth in the number of agents as seen in the original JAL approach. Recent studies in this area
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enable agents to learn function approximators that are able to take the policies of opponents into
account when calculating Q-values (He et al., 2016; Posor et al., 2020).

2.2.6 Policy Gradient Method

The next type of algorithms we consider is the policy gradient method. Previous sections on
Q-learning and joint-action learning showed that these were designed so that agents learn specific
state action values that they can subsequently use to infer a strategy from. The policy gradient
method on the other hand tries to learn a parameterised policy directly (Sutton & Barto, 2018).
Policy gradient algorithms have shown great success throughout its history and a wide variety
of popular algorithms has been created based upon this method (Schulman et al., 2017; Silver
et al., 2014). In the case of MARL, we can implement independent learners that each learn a
policy through a policy gradient algorithm, similar to the independent agents used in multi-agent
Q-learning.

Concretely, policy gradient algorithms attempt to learn a vector of policy parameters θ ∈ Rd′

to a policy π. Important to note here is that action-value methods can still be used to learn
the parameters θ, but are not used during action selection (Sutton & Barto, 2018). The action
selection process can thus be defined as follows:

π(a|s,θ) = Pr{At = a|St = s,θt = θ} (2.7)

We can see that the probability an action a is selected depends on the state st and parameters
θt at the current timestep t. In general, we impose no restrictions on the parameterisation of the
policy π as long as it remains differentiable with respect to its parameters (Sutton et al., 2000).
A straightforward design for parameters θ, specifically in the stateless setting of NFGs, is then
to designate the parameters as numerical preferences over the actions. For the policy π, we can
then simply compute a softmax distribution according to the parameters where the parameters
with the highest value have the greatest probability of being selected as seen in Equation 2.8.

π(a|θ) =
eθi∑|A|
j=1 e

θj
(2.8)

Vital to the concept of policy gradient algorithms is the performance measure function with
respect to the parameters J(θ) which we attempt to maximise by traversing its gradient. Because
our policy π only depends on the current state and learned parameters θt, optimising these
parameters for some objective function J(θ) also means optimising the policy to attain this goal.
We can compare the process of optimising the objective function through gradient ascent to
descending the gradient of a loss function in neural networks (Mitchell, 1997). In the case of
policy gradient however, we attempt to maximise our performance measure and thus we ascend
on the gradient. A general update rule for our policy parameters can be defined as follows:

θt+1 = θt + α∇J(θt) (2.9)

Furthermore, it can be proven that if we define the objective function J(θ) as the true value

function vπθ
under the given policy πθ, ∇J(θ) is proportional to Eπ

[
Gt
∇π(At|St,θ)
π(At|St,θ)

]
with Gt the

return following timestep t (Sutton & Barto, 2018). As such, we can further specify the general
update rule in policy gradient algorithms as seen in Equation 2.10.

θt+1 = θt + αGt
∇π(At|St,θ)

π(At|St,θ)
(2.10)
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2.2.7 Actor-Critic Method

The last learning method that we discuss is the actor-critic method. In the actor-critic method,
we combine two previously examined approaches, namely value methods such as Q-learning and
policy gradient methods. We call the policy the actor and the value function to critic. One
problem that it intends to solve is that in regular policy gradient methods, the gradient can
show high variance which leads to unstable learning (Sutton & Barto, 2018). This problem
stems from the fact that Monte Carlo simulation is used, making it so that different episodes
can have wildly different results which in turn leads to a larger fluctuation in the gradients.
In the end, this leads to a more difficult training process as convergence is delayed because of
the high variance. The addition of a critic to the policy gradient methods is meant to serve as
a baseline so that gradients are smaller, resulting in less variance in the gradients and finally
faster convergence. The actor-critic method thus combines the best aspects of policy gradient
and value learning methods. In this work, we consider actor-critic methods where the critic is
the action-value function as learned in Q-learning. Concretely, this means that we can write the
derivative of the objective function J(θ) as follows:

∇J(θ) = Eπ
[
∇π(At|St,θ)

π(At|St,θ)
Q(St, At)

]
(2.11)

We shown a complete actor-critic algorithm for a stateful setting in Algorithm 3.

Algorithm 3 The actor-critic algorithm

Initialise learning rates αQ and αθ
Initialise Q(s, a) arbitrarily
Initialise parameters θ
for for each episode do

Initialise s
for each step of episode do

Sample an action a ∼ π(a|s,θ)
Take action a, observe r, s′

Update Q-values Q(s, a)← Q(s, a) + αQ[r + γmaxa′ Q(s′, a′)−Q(s, a)]

Calculate derivative of objective function ∇J(θ) = Eπ
[
∇π(At|St,θ)
π(At|St,θ) Q(St, At)

]
Update parameters θ ← θ + αθ∇J(θ)
s← s′

end for
Until s is terminal

end for

Actor-critic methods have seen tremendous success in single-agent RL (Haarnoja et al., 2018;
Sutton & Barto, 2018) and have also been applied to real-world problems such as learning a
quadruped robot to walk (Haarnoja et al., 2019). Furthermore, they have also been studied in the
context of MARL, with equally impressive results. Again, the most straightforward application is
to implement independent actor-critic learning (Foerster et al., 2018). This is one approach that
we also follow in this thesis when designing our own algorithms. In recent years however, there
has been increased interest in a different approach, called the centralised training, decentralised
execution approach which lets agents share additional information during training, but still
assumes a decentralised execution phase. This approach combined with the actor-critic method
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has seen state-of-the-art results in MARL (Lowe et al., 2017). While undoubtedly promising, we
consider this to be outside of the scope of this thesis.

2.2.8 Reward Function

An important factor that we have to consider in multi-agent reinforcement learning is the reward
function that is used. When designing a specific environment, depending on the task at hand, it
would make sense to implement the reward functions a specific way. According to Busoniu et al.,
2008 three different tasks for which we want to alter our reward scheme can be distinguished:

• Fully cooperative tasks: In this setting, all agents have to cooperate in order to reach a
common goal. In this case, it makes sense for players to have the same reward function
(R1 = · · · = Rn), which leads them to optimize the common goal. An example of a fully
cooperative task is multi-agent traffic control (Mannion et al., 2016).

• Fully competitive tasks: In this setting, agents have competing goals. The reward scheme
is set up so that if one agent increases their reward, another agent’s reward must necessarily
decrease. Competitive settings include for example board games such as the game of Go
(Schrittwieser et al., 2020; Silver et al., 2016).

• Mixed: The last setting mixes elements from both the cooperative as well as the competitive
setting. This can for example be found in games such as two-team hide-and-seek (Baker
et al., 2020), where teams of cooperating players compete against each other.

The concept of reward functions is also strongly related to utility functions, which we will
discuss in Section 2.3.2. The combination of these two enables us to classify the settings we
develop in this work in terms of an overall taxonomy of multi-objective multi-agent settings. We
discuss this further when discussing multi-objective multi-agent decision making in Section 2.4.1.

2.3 Multi-Objective Reinforcement Learning

In Multi-Objective Reinforcement Learning (MORL), we consider the setting where a single
agent has multiple, possibly conflicting objectives (Hayes, Rădulescu, et al., 2021). In the single-
objective setting, an agent receives a reward in the form of a scalar value r. In the multi-objective
setting however, we assume that the reward that is obtained for each objective is given in a vector
r, where each entry in the vector is the reward for a specific objective. Similar to single-objective
RL, the agent then learns to optimise for these objectives through interaction with the environ-
ment. In the real world, many different types of situations are inherently multi-objective with
for example medical decision making (Lizotte et al., 2012), molecule optimisation (Zhou et al.,
2019), electric vehicle charging station planning (G. Wang et al., 2013) and energy management
(Kuznetsova et al., 2013). Although multi-objective problems are clearly prevalent in the real
world, most traditional RL methods focus on single-objective problems (Hayes, Rădulescu, et
al., 2021; Roijers et al., 2015). Therefore in this section, we first start by presenting a detailed
overview of the importance of multi-objective approaches and MORL in particular. Following
this, we discuss the approach that we take for the remainder of this thesis, namely the utility
based approach (Roijers et al., 2013; Roijers & Whiteson, 2017). Because agents now care about
multiple objectives rather than a single objective, optimising for the optimal trade-off becomes
an intricate problem. As such, we detail the different approaches one can take to optimise for
these trade-offs in the last part of this section. For a terrific overview and practical guide to
MORL, we refer to a recent survey by Hayes, Rădulescu, et al., 2021.
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2.3.1 Importance of Multi-Objective Theory

The need and use cases for multi-objective methods have been argued many times over the
years (Hayes, Rădulescu, et al., 2021; Rădulescu, Mannion, Roijers, et al., 2020; Roijers et al.,
2013; Roijers et al., 2015). It is relatively easy to find practical problems where we have multiple
competing goals such as the ones mentioned before. A popular approach to deal with this so that
traditional RL approaches can still be used, is to transform inherently multi-objective problems
to single-objective settings by applying a priori additive scalarisation (Hayes, Rădulescu, et al.,
2021). This means that we transform the incoming reward vector to a scalar value by combining
the returns through some scalarisation function, also called utility function. Hayes, Rădulescu,
et al., 2021 mention five main reasons why such a priori scalarisation is not always appropriate.

1. It is a manual process that only examines a subset of all possible scalarisations. Because
we never see the full range of scalarisation functions this can lead to agents being able to
learn acceptable behaviour, but never optimal.

2. It prevents the end user from taking their own informed decisions. This is clear because
the scalarisation is applied a priori, leaving only the final scalar result for the end user.

3. It makes the decisions made by the agent less explainable. Instead of being able to show the
resulting outcomes for each particular objective, only the final scalarisation can be shown.

4. It is not expressive enough to capture all possible scalarisation functions actual humans can
have. Non-linear utility functions for example can not be expressed due to mathematical
inconsistencies with many reinforcement learning algorithms.

5. Preferences over objectives can change over time. This would require the agent to be
completely retrained with the new scalarisation function.

Furthermore, six general scenarios can be described that require a multi-objective approach
(Hayes, Rădulescu, et al., 2021; Roijers et al., 2013). We show these settings in Figure 2.2. Note
that this figure assumes agents to be in a Multi-Objective Markov Decision Process (MOMDP)
setting, which can intuitively be considered as a single-agent multi-objective decision making
problem (Roijers et al., 2013). As MOMDPs fall outside of the scope for this thesis, we will not
go deeper into them.

(a) The unknown utility function scenario, presents an unknown utility function in the
planning or learning phase. A MORL algorithm would still be able to calculate a solution
set, containing all policies that would be optimal under some utility function. During the
selection phase, once the utility function does become known, we can simply apply this to
the set and select the optimal policy.

(b) The decision support scenario occurs when the preferences of the end-user are again
unknown in the first stage. Once trained however, the user is in principle able to select the
policy that returns the best trade-offs according to the user’s own preferences. This scenario
is known as the decision support scenario, as the explicit trade-offs between objectives help
the user to select the optimal policy.

(c) The known utility scenario is the case where scalarisation would be possible, but doing
so would lead to a problem where standard solution methods are not applicable, making
the problem difficult to solve (Roijers et al., 2013).
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Figure 2.2: Six scenarios that require a multi-objective specific approach as detailed by Hayes,
Rădulescu, et al., 2021.
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(d) The interactive decision support scenario, lets the algorithm learn about the envi-
ronment as well as the user. By presenting the user with several options over time, the
algorithm can learn to better tailor the learned policy to their preferences.

(e) The dynamic utility function scenario, the user changes preferences over time, requir-
ing the agent to learn a solution set and dynamically select the current optimal solution
after applying the utility function.

(f) Lastly, the review and adjust scenario again has no known utility function in the first
phase. The user is able to select their preferred policy in the second phase, and review the
final outcome before execution in the last phase. This can then lead the user to update
their preferences, which in turn requires the algorithm to update their selected policy.

In this work, we focus our attention to the known utility scenario in which each agent in the
environment has a known utility function. Note however, that it is not necessary for agents to
know each others utility functions as well. For example in competitive settings, it would not
make sense to unveil an agent’s utility function to their competitors, as that information can
likely be abused.

2.3.2 Utility Based Approach

As previously mentioned, MORL assumes that the reward that is obtained for each objective
is given in a vector r, where each entry in the vector is the reward for a specific objective. In
the MORL literature, there exist two prevalent approaches of dealing with this reward vector.
The first, called the axiomatic approach, asserts that the Pareto front is the optimal solution
set (Roijers et al., 2013). This is limiting in the fact that we can not choose a different solution
concept to optimise for and is often very computationally expensive (Hayes, Rădulescu, et al.,
2021). The second approach on the other hand takes a utility-based approach which assumes
that an agent has an internal utility function which derives a final utility from a reward vector
with d objectives u : Rd → R (Roijers et al., 2013). This presents several advantages over the
axiomatic approach, as an agent’s utility function can greatly influence the types of solution
concepts that are applicable and whether optimal solutions can even exist (Rădulescu, Man-
nion, Zhang, et al., 2020). Furthermore, they can be used as additional domain knowledge that
provides several computational benefits during the learning process (Hayes, Rădulescu, et al.,
2021). In this thesis, we follow this approach because of the aforementioned advantages over the
axiomatic approach and recent success in the MORL literature (Hayes, Reymond, et al., 2021;
Hayes, Verstraeten, et al., 2021; Rădulescu, Mannion, Roijers, et al., 2020; Rădulescu, Mannion,
Zhang, et al., 2020; Roijers et al., 2013).

Central to the utility-based approach is of course the utility function itself. The simplest type
of utility function is the linear utility function. This means that for every objective o from the
set of objectives O we associate a weight wo ∈ [0, 1] from the weight vector w for which the sum
of all weights equals one. We can then calculate the final utility, by summing over the weighted
returns for the objectives. This results in the following equation:

u(r) =
∑
o∈O

woro (2.12)

Which is the same as saying that the utility function is the inner product of the reward vector
r with the weight vector w.

u(r) = w · r (2.13)
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On the other hand, it is also possible to use a nonlinear discontinuous function. This is for
example the case when an agent has to receive a payoff over a certain threshold, an example of
which is shown below.

u(r) =

{
rto if ro ≥ to
0 otherwise

(2.14)

Here, ro is the reward for objective o, to is the threshold for objective o and rto is the reward
when reaching the threshold for the objective o.

In the nonlinear case, we make the minimal assumption that the utility function is monoton-
ically increasing. This assumption is not very far fetched as it simply means that we strive for
more from each objective. We define a monotonically increasing utility function as follows:

Definition 2.3.1 (Monotonically increasing utility function). A utility function u is monotoni-
cally increasing if:

(∀o, V πo ≥ V π
′

o ) =⇒ u(V π) ≥ u(V π′)

This means that if for each objective o the reward is equal or higher under policy π than π′,
the utility of the reward vector V under policy π is also equal or higher than under policy π′.

In Section 2.3.1 we showed that the utility function is not necessarily known a priori, as for
example in the unknown weights scenario or the decision support scenario. If this is the case,
interactive solutions can be used to elicit user preferences (Zintgraf et al., 2018). By ordering
different optimal outcomes by user preference, the inherent utility function that these users have
can be modeled and subsequently used in selecting an optimal policy.

2.3.3 Multi-Objective Optimisation Criteria

The utility based approach that we adhere to in this thesis brings with it an interesting question.
What should agents optimise for? Let us first illustrate this question with an example. Assume we
have a person who is intent on optimising their commute to work with regard to two objectives,
namely speed and comfort. On the one hand, it could be possible that they care about the
average utility they can derive from each single commute. In stricter terms, this would mean
that they optimise for the average utility of the returns. On the other hand, it is equally possible
that they wish to optimise the utility of the average commute or in other words the utility of
the average return for both objectives. It is easy to see that depending on which criterion they
favour, the resulting policy could prove to be very different.

Expected Scalarised Returns

In the first case of this example, we optimise for the utility of each individual policy execution.
This results in what is called the Expected Scalarised Returns (ESR) criterion (Hayes, Reymond,
et al., 2021; Rădulescu, Mannion, Zhang, et al., 2020; Roijers et al., 2018). We formally define
ESR in terms of stateless settings, meaning that we care about the scalarised payoff pu under
utility function u by optimising the expected utility of the payoff vector pπ under policy π :

pu = E [u (pπ)] (2.15)

This optimisation criterion has been the de facto standard in the game-theoretic literature,
but remains understudied from a learning or planning perspective (Rădulescu, Mannion, Roijers,
et al., 2020). An important consideration when optimising for the ESR criterion in MONFGs
is the fact that is has been shown that they can be effectively reduced to single-objective NFGs
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(Rădulescu, Mannion, Zhang, et al., 2020). This insight implies that traditional RL techniques
can be applied to solve such problems.

Scalarised Expected Returns

In the second case of the example, we optimise for the utility we can derive from several executions
of the same policy. This implies that we first calculate the expectation over the returns before
scalarising this vector, resulting in what is called the Scalarised Expected Returns (SER) criterion
(Rădulescu, Mannion, Zhang, et al., 2020; Roijers et al., 2013):

pu = u (E [pπ]) (2.16)

It has been shown that these optimisation criteria are not equal in general and as such
should be carefully considered when applied in practice (Rădulescu, Mannion, Zhang, et al.,
2020). Contrary to the ESR criterion in MONFGs, the SER criterion does not translate easily
to traditional RL techniques. Furthermore, while SER has received some attention in the RL
community, several techniques such as communication have not yet been studied. For these
reasons, we concern ourselves with the latter criterion in this work.

2.4 Multi-Objective Multi-Agent Reinforcement Learning

Multi-Objective Multi-Agent Reinforcement Learning (MOMARL) is the RL field that is sit-
uated at the intersection of MARL and MORL. In this setting, we consider multiple agents
operating in the same environment and optimising for multiple objectives. In recent years, more
research is being done in this field as the applicability of multi-objective multi-agent approaches
is becoming more apparent. Interesting applications include for example scheduling (Y. Wang
et al., 2019), traffic signal control (Khamis & Gomaa, 2014), and coalition formation (Igarashi
& Roijers, 2017). In this section, we first discuss several Multi-Objective Multi-Agent Decision
Making (MOMADM) settings and highlight the setting we apply in our work. Following this,
we specify the exact framework we use in experiments, namely Multi-Objective Normal-Form
Games (MONFGs). We then discuss the relevant solution concepts that can occur in this setting
and will later be of importance during the analysis of the experimental results. To end our
background section, we discuss two important multi-objective multi-agent algorithms, namely
independent multi-objective Q-learning and independent multi-objective actor-critic. For a re-
cent in-depth survey with regards to multi-objective multi-agent decision making we refer to
Rădulescu, Mannion, Roijers, et al., 2020.

2.4.1 Multi-Objective Multi-Agent Decision Making

In single-agent MORL, we can assume that each time a policy is executed the user has a utility
function that it can use to derive a final utility from the reward vector. In MOMARL however,
it is entirely possible that all agents receive different reward vectors and have different utility
functions. For this reason, Rădulescu, Mannion, Roijers, et al., 2020 propose a taxonomy of
MOMADM settings. This taxonomy is based on both the reward functions that are used as well
as the utility functions. We show a complete overview of this taxonomy in Figure 2.3.

To understand this taxonomy, first consider the reward layer. In some MOMADM settings,
it is possible that each agent receives the same reward R1 = · · · = Rn = R. This is called the
team reward setting. On the other hand as mentioned before, it is also possible that each agent
receives an individual reward vector.
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Figure 2.3: A taxonomy of multi-objective multi-agent decision making settings (Rădulescu,
Mannion, Roijers, et al., 2020).

In the second layer, we see a distinction between three possible settings for the utility function.
Firstly, it is possible that each player has the same utility function u1 = · · · = u2 = u. On the
contrary, it is also possible that each agent has an individual utility function that may or may
not be known to other agents. The last option is the social choice setting, which assumes some
optimal social behaviour. In this setting, we take all individual utility functions into account
and attempt to formulate a socially desirable outcome that is then optimised for (Rădulescu,
Mannion, Roijers, et al., 2020).

In this thesis we study settings that use the team reward individual utility setting. As
mentioned previously, each player receives the same reward vector R1 = · · · = Rn = R but has
an individual utility function. A known example of this setting occurs when groups of people
should jointly decide on a specific outcome (Rădulescu, Mannion, Roijers, et al., 2020). For
illustration purposes, assume a group of friends deciding on a joint activity. The reward of doing
this joint activity is the same for everyone in terms of seeing your friends, spending time together,
doing a fun activity and the price of the activity. However, it is possible that each person gets a
different utility from this activity based on their personal preferences.

2.4.2 Multi-Objective Normal-Form Games

Multi-Objective Normal-Form Games (MONFGs) can be intuitively understood as the multi-
objective counterpart to NFGs. This means that contrary to single-objective NFGs, agents now
receive a payoff vector from which they can derive a utility. MONFGs were first introduced by
Blackwell, 1954 and have been the main focus in much of the MOMARL literature (Rădulescu,
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Mannion, Zhang, et al., 2020; Rădulescu, Verstraeten, et al., 2020; Zhang et al., 2020). We can
formally define a MONFG similarly to the definition given in Section 2.1.1:

Definition 2.4.1 (Multi-objective normal-form game). A (finite, n-person) multi-objective normal-
form game is a tuple (N,A,p), with n ≥ 2 and d ≥ 2, where:

• N is a finite set of n players, indexed by i;

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i. Each vector
a = (a1, . . . , an) ∈ A is called an action profile;

• p = (p1, . . . ,pn) where pi : A → Rd is the vectorial payoff of player i, given an action
profile.

We can express MONFGs as a matrix in the same manner as we previously did for NFGs.
We show an example of this in Table 2.5. Note that we can read this matrix in the same way
as a single-objective NFG. The difference in this case is that the payoff for a given player is not
represented as a scalar value, but rather a vector.

A B
A (1, 1), (0,0) (0, 1), (1,0)
B (1, 0), (0,1) (0, 0), (1,1)

Table 2.5: A matrix representation of a multi-objective normal-form game. Each cell holds the
vectorial payoff for both agents under the corresponding action profile.

In this work we consider this setting and examine the impact of communication on learning
agents in them. Important to note is that while MONFGs are one of the most studied concepts
in MOMARL, they are not the only setting that is considered. Recent work also considers coali-
tion formation games (Igarashi & Roijers, 2017), stateful environments such as multi-objective
stochastic games (Mannion et al., 2017) and a wide range of other settings (Rădulescu, Mannion,
Roijers, et al., 2020).

2.4.3 Solution Concepts

Analogous to our discussion of solution concepts in single-objective NFGs in Section 2.1.3, we
also discuss import solution concepts in MONFGs. These solution concepts will occur in several
places in the remainder of this work and as such deserve formal definitions.

Nash Equilibrium

We previously defined the Nash equilibrium as the strategy profile from which no player could
unilaterally deviate and still improve their expected payoff. In the multi-objective case, we must
slightly redefine this as we now have to account for a vectorial payoff vector. We also need to
define a NE separately in terms of ESR and SER. In the stateless setting of MONFGs, we can
define a Nash Equilibrium under ESR as follows:

Definition 2.4.2 (Nash equilibrium for expected scalarised returns). A joint policy πNE leads
to a Nash equilibrium under the expected scalarised returns criterion if for each agent i ∈ 1, · · · , n
and for any alternative policy πi:

Eui
(
pi
(
πNEi ,πNE−i

))
≥ Eui

(
pi
(
πi,π

NE
−i
))
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Intuitively, this means that for a NE under the ESR criterion, no agent is able to unilaterally
deviate from the joint policy and increase their expected utility. For the SER criterion on the
other hand, we obtain the following definition:

Definition 2.4.3 (Nash equilibrium for scalarised expected returns). A joint policy πNE leads
to a Nash equilibrium under the scalarised expected returns criterion if for each agent i ∈ 1, · · · , n
and for any alternative policy πi:

ui
(
Epi

(
πNEi ,πNE−i

))
≥ ui

(
Epi

(
πi,π

NE
−i
))

Meaning that in a Nash equilibrium under SER, no agent can increase the utility of their
expected reward by deviating unilaterally from the joint policy. Important to note is that while
all single-objective NFGs must contain at least one Nash equilibrium, this does not hold for
MONFGs where we are optimising for the SER criterion as proven by Rădulescu, Mannion,
Zhang, et al., 2020.

Cyclic Nash Equilibrium

The second solution concept that is important to discuss is the cyclic Nash equilibrium. Cyclic
NE extend the concept of Nash equilibria to cyclic policies, which are a sequence of stationary
policies π = {π1, · · · , πk}. The solution concept of cyclic NE was originally coined in stochastic
games (Zinkevich et al., 2005), but due to the novel learning approaches designed in this work
can also occur in repeated MONFGs. Important to note is that as far as the authors are aware,
this phenomenon had not previously been noted in the literature on this setting. We contribute
the formulation of cyclic NE for MONFGs under the ESR criterion as follows:

Definition 2.4.4 (Cyclic Nash equilibrium for expected scalarised returns). A joint cyclic policy
πNE , with πNEi = {πNEi,1 , · · · , πNEi,k } leads to a cyclic Nash equilibrium under the expected
scalarised returns criterion if for each agent i ∈ {1, · · · , n}, each policy j ∈ {1, · · · , k} and for
any alternative cyclic policy πi:

Eui
(
pi
(
πNEi,j ,π

NE
−i,j
))
≥ Eui

(
pi
(
πi,j ,π

NE
−i,j
))

Simply put, in a cyclic NE under the ESR criterion, no agent can improve their expected
utility by unilaterally deviating from the joint cyclic policy. We define a cyclic NE under the
SER criterion as follows:

Definition 2.4.5 (Cyclic Nash equilibrium for scalarised expected returns). A joint cyclic policy
πNE , with πNEi = {πNEi,1 , · · · , πNEi,k } leads to a cyclic Nash equilibrium under the scalarised
expected returns criterion if for each agent i ∈ {1, · · · , n}, each policy j ∈ {1, · · · , k} and for any
alternative cyclic policy πi:

ui
(
Epi

(
πNEi,j ,π

NE
−i,j
))
≥ ui

(
Epi

(
πi,j ,π

NE
−i,j
))

Again, this implies that no agent can unilaterally deviate from the joint cyclic policy and
improve the utility of their expected returns.

2.4.4 Independent Multi-Objective Q-learning

The first algorithm that deserves attention is independent multi-objective Q-learning, which
we consider in the MONFG setting. This algorithm closely resembles the original Q-learning
algorithm (see Section 2.2.4), but this time in a multi-agent environment with independent



26 CHAPTER 2. BACKGROUND

learners. Additionally, to account for the vectorial payoffs, the Q-learning update rule is adapted
to the following:

Q(a)← Q(a) + α [r −Q(a)] (2.17)

Note that it is nearly identical to the original Q-learning update, but we now consider vector
operations rather than scalar operations. We present the entire Algorithm in 4.

Algorithm 4 Independent multi-objective Q-learning under SER

for each player do
Initialise learning rate α decays d
For each action a ∈ A and with d ≥ 2 objectives, initialise vectorial action-value Q(a)← 0

end for
for each episode do

for each player do
Choose a from s using ε-greedy action selection
Take action a and observe payoff vector p ∈ Rd
Update Q-value Q(a)← Q(a) + α [p−Q(a)]
Decay learning rate: α← dα

end for
end for

The first stage of the algorithm is the initialisation phase. We first initialise a learning rate and
decay and subsequently the vectorial Q-values to zero vectors. In fact it is possible to initialise
these Q-values arbitrarily, however a zero initialisation is considered a common approach. The
next part of the algorithm contains the actual learning process. In each episode both players first
sample an action using an ε-greedy action selection mechanism. Important to note here also is
that under SER, it is possible that a mixed strategy will result in the highest SER. An example
of this occurs when we have two objectives x and y and a utility function u(x, y) = x∗y. If there
are then two actions resulting in [1, 2] and [2, 1] respectively, the maximum SER we can obtain
from a pure strategy would be 2. However, playing a mixed strategy with uniform probabilities
would result in an expected return of [1.5, 1.5], leading to an SER of 2.25. Therefore, we need
to calculate the optimal mixed strategy and sample a greedy action from this distribution. This
can be done for example by using a nonlinear optimiser that optimises for the maximum SER
using the current Q-values (Rădulescu, Mannion, Zhang, et al., 2020). After playing the sampled
action and observing the payoff vector, the agents update their Q-values as per the update rule
in Equation 2.17. The algorithm concludes by letting each agent decay their learning rate, which
ensures that the learning process converges as the learning rate will move closer to zero over
time.

2.4.5 Independent Multi-Objective Actor-Critic

The second algorithm that we wish to describe is the independent multi-objective actor-critic
algorithm, first introduced by Zhang et al., 2020 and also adopted in further work by Rădulescu,
Verstraeten, et al., 2020. The algorithm closely resembles the original actor-critic method as
described in Section 2.2.7 with independent learners for the multi-agent setting. There is however
one important difference to highlight concerning the objective function J(θ) in dealing with the
multi-objective nature of our setting. In the original actor-critic method, this objective function
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was framed in terms of the value function. In our case, this objective function comes from the
problem statement as we wish to optimise for the SER criterion, which naturally translates to:

J(θ) = u

(∑
a∈A

π(a|θ)Q(a)

)
(2.18)

Intuitively, this objective function thus describes the utility of applying our policy to the
estimated Q-values or in other words the SER. We show the complete algorithm in Algorithm 5.

Algorithm 5 Independent multi-objective actor-critic under SER

for each player do
Initialise learning rates αQ and αθ and decays dQ and dθ
For each action a ∈ A and with d ≥ 2 objectives, initialise vectorial action-value Q(a)← 0

Initialise θ = 0 and π(a = ai|θ) = eθi∑|A|
j=1 e

θj

end for
for each episode do

for each player do
Sample action a ∼ π(a|θ)
Observe payoff vector p ∈ Rd
Q(a)← Q(a) + αQ [p−Q(a)]
calculate objective function: J(θ) = u

(∑
a∈A π(a|θ)Q(a)

)
Update policy parameters: θ ← θ + αθ∇J(θ)
Decay learning rates: αQ ← dQαQ and αθ ← dθαθ

end for
end for

The first phase of the algorithm is again to initialise the learning rates, one for the Q-values
and one for the function parameters, and subsequently the decay factors. We then initialise our
vectorial Q-values to zero vectors. The following step initialises our function parameters to a
zero vector as well and poses that our policy to decide on the optimal action will simply be a
softmax function over these parameters. The next phase contains the actual learning process for
each agent. In here, we first sample a new action according to our policy and the current learned
parameters. Following this, we observe the payoff vector and use it to update our Q-values.
With these new Q-values, we can update our objective function ass well by using Equation 2.18.
We can then update our parameters by performing a step on the gradient. Lastly, we decay the
learning rates which again we do to ensure convergence.
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Chapter 3

Theoretical Considerations on
MONFGs

In this chapter, we take a game-theoretic perspective on MONFGs and present our first contribu-
tions of this thesis. As previously described, when optimising for the SER criterion we optimise
for the utility we can derive from several executions of the same policy. ESR on the other
hand will lead us to optimise for the utility of each individual policy execution. Earlier work
on multi-objective games in general does not assume known utility functions and often does not
make an explicit distinction between SER and ESR (Nakayama et al., 1981; Voorneveld, 1999;
Wierzbicki, 1995). We on the other hand do make this distinction and further assume known
utility functions, which enables us to study the characteristics of NE in MONFGs under both
criteria. In the first section of this chapter, we study the occurence and frequencies of Nash
equilibria in MONFGs both under ESR and SER. Here, we prove by construction for the first
time that for the same MONFG, the size of the sets of equilibria under SER and ESR can differ
when both settings have at least one NE. Additionally, we show that these sets may be disjoint.
Next, we analyse whether pure strategy NE persist from the ESR criterion to the SER criterion
and vice versa. Here, we formally show that pure strategy NE under SER must necessarily also
be NE under ESR, while the same does not hold the other way around. If we make the additional
assumption that all utility functions that are used in the game are convex, pure strategy NE
do persist from ESR to SER. Concretely, we contribute five novel properties and provide formal
proofs for them. We note that this work builds upon previous results by Rădulescu, Mannion,
Zhang, et al., 2020 which studied Nash equilibria in MONFGs in great detail.

3.1 Occurrence of Nash Equilibria

The study of NFGs knows a long history and has been the focus of many works. As a consequence,
much is known about their inner working, including the fact that each NFG must have at least
one mixed strategy NE (Nash, 1951). The study of MONFGs on the other hand, and specifically
using a utility-based approach, has been gaining traction in recent years but much less is yet
known about them. An important recent results showed that in general, the choice of optimisation
criterion can lead to different equilibria and that under SER no NE need necessarily exist, even
when the utility functions of all agents are known (Rădulescu, Mannion, Zhang, et al., 2020). In
this section, we build upon this work by providing a further study of the general occurence of NE
in MONFGs under both optimisation criteria, with the assumption of known utility functions.
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Our first finding states that in a MONFG, the total number of NE under SER and under ESR, if
both have at least one NE, need not be equal. We formally articulate this property in Theorem
1

Theorem 1. In a (finite, n-person) multi-objective normal-form game with at least one Nash
equilibrium under both criteria, the size of the sets of Nash equilibria under the scalarised expected
returns criterion and under the expected scalarised returns criterion need not be equal.

Proof. We can prove this theorem by constructing a MONFG that has this exact property. The
MONFG we use for this purpose can be seen in Table 3.1. We show next to this MONFG the
scalarised single-objective NFG in which both agents use the same utility function:

u(x, y) = 0.1 ∗ x+max(0, x) ∗max(0, y) (3.1)

A B
A (1, 0) (0, 1)
B (0, 1) (-1, 0)

(a) The multi-objective
reward vectors.

A B
A (0.1, 0.1) (0, 0)
B (0, 0) (-0.1, -0.1)

(b) The utility for both agents.

Table 3.1: A MONFG with its scalarised single-objective NFG that shows by construction the
two properties in Theorem 1 and 2. The highlighted cells are pure Nash equilibria. Note that
both agents receive the same reward vector and we show this vector only once in the MONFG.

Let us first show the NE in the MONFG under ESR. We do this by first applying the utility
functions for each agent – which in this case happens to be the same – directly to the payoff
vectors in the MONFG, resulting in the single-objective NFG in Table 3.1b. We then observe
that only the pure strategy profile (A, A) results in utilities above 0 for both agents. As such,
there is no incentive for agents to play a mixed strategy when the other agent plays A at least
part of the time, leading to the pure strategy NE of (A, A). Additionally, (B, B) is not a NE,
as there is an incentive for either agent to play A, which increases their utility. This then again
leads both agents to adapt their strategies to the NE of (A, A), making it the only NE of the
MONFG under ESR.

Next, we discuss the NE for the MONFG under SER (3.1a). Important to note is that there
is no known algorithm that is able to calculate all mixed strategy NE under SER for a given
MONFG with known utility functions. We can however show that the pure strategy NE of
(A, A) under ESR is not a NE under SER. To see this, observe that when one agent plays A
deterministically, the best response for the other agent is to play a mixed strategy with prob-
ability 11

20 for action A and probability 9
20 for action B. This results in an expected return of

( 11
20 ,

9
20 ) and a utility of 0.1 · 1120 + max

(
0, 1120

)
· max

(
0, 9

20

)
= 0.3025 for both agents. In fact,

this constitutes a NE under SER for this game, as no agent has an incentive to deviate from this
strategy. A second NE occurs when the agents switch strategies, resulting in the same payoffs.
Please note that this is the case since both agents receive the same expected payoff vectors, and
apply the same utility function to these. We can also show that the pure strategy (B, B) is
not a NE, as this can be improved upon by either agent deterministically playing A. As such,
the MONFG in Table 3.1 has at least two mixed strategy NE under SER and no pure strategy NE.

In this MONFG, both the game under SER and ESR have NE. However, we can see that
they have a different amount of NE, therefore proving Theorem 1.
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Our second finding pertaining to Nash equilibria in MONFGs states that when both SER and
ESR have a Nash equilibrium, none must necessarily be shared. We formalise this in Theorem
2.

Theorem 2. In a (finite, n-person) multi-objective normal-form game with at least one Nash
equilibrium under both criteria, the set of Nash equilibria under the scalarised expected returns
criterion and the set of Nash equilibria under the expected scalarised returns criterion may be
disjoint.

Proof. Theorem 2 can be shown by using the same construction in Figure 3.1. It is clear from
this construction that while NE exist under both criteria, the set of NE under SER is disjoint
from the set of NE under ESR.

3.2 Pure Strategy Nash Equilibria

As previously noted, SER and ESR are not equivalent in general and no Nash equilibrium need
necessarily exist under SER (Rădulescu, Mannion, Zhang, et al., 2020). One important open
question that remains however is under what circumstances the two criteria are equivalent and
whether Nash equilibria can persist under both criteria. In this section, we first show that a
pure strategy Nash equilibrium under SER must always be a pure strategy Nash equilibrium
under ESR as well. Furthermore, we show that the inverse does not hold by providing a counter
example. However, we show that adding the assumption that all utility functions in the MONFG
are convex does ensure that pure strategy NE under ESR are also NE under SER. Proving these
equivalence relations is of importance as it means that approaches to calculating NE under one
criterion could potentially be applied to the other criterion as well. Equivalence relations from
ESR to SER in specific could be extremely useful as a MONFG under ESR can be reduced to
a single-objective NFG for which there are several well performing algorithms that are able to
calculate one or all NE in the game (Echenique, 2007; Herings & Peeters, 2005; Lemke & Howson
J. T., 1964).

In order to show that a pure strategy NE under SER must necessarily be a pure strategy
NE under ESR, we first introduce a necessary concept in Lemma 3. This lemma states that the
utility of a pure strategy profile under SER is the same as the utility of that pure strategy profile
under ESR.

Lemma 3 (Utility of a pure strategy). Given a pure strategy profile in a (finite, n-person) multi-
objective normal-form game, the expectation of the payoff will always be the observed payoff, as
the expectation of a constant is equal to that constant:

E[p] = p

and given a utility function u, the expected utility will also equal the observed utility by the
same reasoning

E[u(p)] = u(p)

We can thus say that for a pure strategy profile, the utility of a payoff under SER equals the
utility under ESR:

u(E[p]) = u(p) = E[u(p)]

Given this lemma, we can now define the first theorem of this section which states that a
pure strategy Nash equilibrium under SER, must always be a pure Nash equilibrium under ESR
as well.
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Theorem 4. In a (finite, n-person) multi-objective normal-form game, a pure strategy Nash
equilibrium under the scalarised expected returns criterion must necessarily also be a Nash equi-
librium under the expected scalarised returns criterion.

Proof. Given a pure strategy Nash equilibrium under SER πNE , we can say that:

ui
(
Epi

(
πNEi ,πNE−i

))
≥ ui

(
Epi

(
πi,π

NE
−i
))
⇐⇒ ui

(
pi
(
πNEi ,πNE−i

))
≥ ui

(
Epi

(
πi,π

NE
−i
))

=⇒ ∀a ∈ Ai : ui
(
pi
(
πNEi ,πNE−i

))
≥ ui(pi(a, πNE−i )

⇐⇒ ui
(
pi
(
πNEi ,πNE−i

))
≥ max

α

∑
a∈Ai

αaui(pi(a, π
NE
−i ))

⇐⇒ Eui
(
pi
(
πNEi ,πNE−i

))
≥ Eui

(
pi
(
πi,π

NE
−i
))

⇐⇒ A pure Nash equilibrium under ESR

The proof starts with the general definition of a pure strategy Nash equilibrium under SER
and removes the expected values where possible in line one. In line two, we remark that if the
pure strategy profile is an NE, it must necessarily also be better than unilaterally playing another
pure strategy. In line three, this leads us to state that the utility of the pure strategy NE is
greater or equal to the optimal stochastic mixture of the utilities of the other pure strategies. In
line five, we can freely introduce the expected value again in the left hand side of the inequality
and rewrite the right hand side such that it now reflects the expected scalarised returns. This
final inequality is also the definition of a Nash equilibrium under ESR. Given this positive result,
it is alluring to believe that the inverse, so going from ESR to SER, would also hold. However,
this is not actually the case as we can only guarantee that the utility of a pure strategy profile is
greater or equal to the optimal stochastic mixture of scalar utilities. We can not guarantee that
it is better than the utility of the optimal stochastic mixture of reward vectors.

Theorem 5. In a (finite, n-person) multi-objective normal-form game, a pure strategy Nash
equilibrium under the expected scalarised returns criterion need not also be a Nash equilibrium
under the scalarised expected returns criterion.

Proof. We show this theorem formally by using the same MONFG and utility functions as
presented in the previous section. Recall that in this game, there was a pure NE under ESR but
no pure NE under SER.

We add that an additional assumption can be made to remedy this negative result. Con-
cretely, by making the assumption that all utility functions used by the players in the game are
convex, we are still able to show that a pure strategy NE under ESR, must also be a NE under
SER.

Theorem 6. In a (finite, n-person) multi-objective normal-form game where all player utility
functions are convex, a pure strategy Nash equilibrium under the expected scalarised returns cri-
terion must necessarily also be a Nash equilibrium under the scalarised expected returns criterion.

We provide a formal definition of a convex function below. In simple terms, a convex function
can be defined as a function for which the line segment between any two points lies above the
graph between these two points. We show a visual example of such a function in Figure 3.1.

Definition 3.2.1. A function f : Rn → R is convex if its domain is a convex set and for all x, y
in its domain, and all t ∈ [0, 1], we have: f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)
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0

Figure 3.1: An example of a convex function. The dotted line denotes the fact that the line
segment between any two points lies above the graph between them.

The proof for Theorem 6 then goes as follows:

Proof. Given Jensen’s inequality, we know that if ui is convex:

E [ui(pi(π))] ≥ ui (E[pi(π)])

Then if we have a pure Nash equilibrium under ESR and if ui is convex for every player i:

E[ui(p(πNEi , πNE−i ))] ≥ E[ui(p(πi, π
NE
−i ))] =⇒ ui(E[p(πNEi , πNE−i )]) ≥ E[ui(p(πi, π

NE
−i ))]

=⇒ ui(E[p(πNEi , πNE−i )]) ≥ E[ui(p(πi, π
NE
−i ))] ≥ ui(E[p(πi, π

NE
−i )])

=⇒ ui(E[p(πNEi , πNE−i )]) ≥ ui(E[p(πi, π
NE
−i )])

=⇒ A pure Nash equilibrium under SER

This proof first introduces Jensen’s inequality (Jensen, 1906) to show that when all utility
functions are convex, the expected scalarised returns are always greater or equal to the scalarised
expected returns. Moving along, in the first line we write the definition of a NE under ESR and
note that when the NE is a pure strategy profile, we can place the expectation inside the utility
as it is equal. In the second line, we introduce a new element to the inequality by using Jensen’s
formula. Lastly, we remove the inner part of the inequality. By doing this, we have arrived at
the definition of a NE under SER, proving our statement.

In this section, we have discussed and proven five properties that were previously unknown
in the MONFG literature. By constructing a specific MONFG, we were able to show that
the number of NE under SER and ESR must not be equal when both criteria have NE. This
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construction was also able to demonstrate that no NE need necessarily be shared by both criteria.
Additionally, we provided a formal proof for the fact that pure strategy NE under SER must
necessarily also be pure strategy NE under ESR. The same MONFG as before was used to reveal
that the reverse does not hold in general. Lastly, we showed that pure strategy NE under ESR are
also NE under SER when taking the additional assumption that only convex utility functions are
used. In the next sections, we shift our focus from a mostly theoretical perspective to a learning
perspective and detail the design of several novel algorithms in the setting of MONFGs.



Chapter 4

Communication for Cooperation
and Self-Interest

In this chapter, we introduce the communication settings we study in this work and show the
algorithms we design for agents to learn in these settings. In order to accurately study the
influence communication can have on learning agents in MONFGs, we create a total of five
distinct approaches. The communication mechanics in these approaches are meant to induce
specific cooperative or self-interested behaviour. Out of these five approaches, the first one
does not involve agents communicating at all and serves as a baseline for comparing future
experiments against. The four other communication settings use a leader-follower model inspired
by Stackelberg games. Each episode, one agent is designated as the leader and one as the follower.
In every episode, the leader communicates a specific message depending on the setting the agents
are in and the follower is able to react to this message. Lastly, when an episode is finished and
a new episode is started, agents will switch roles. Several communication settings presented in
this chapter have previously been published in Röpke et al., 2021.

4.1 No Communication

As mentioned before, one of the overall objectives of this thesis is to analyse the influences of
communication on learning agents in MONFGs. In order to accomplish this goal, it is also
imperative to study learning agents who don’t posses the ability to communicate in these envi-
ronments. For this reason, the first of our five settings uses no communication and serves as a
baseline for comparing other communication settings against. By having this baseline, changes
in learning dynamics in other settings will instantly become apparent. The agents in this setting
learn by using the independent multi-objective actor-critic algorithm, as presented in Algorithm
5. In this algorithm, agents independently learn the action-values of their own actions and as
such implicitly assume the other agent to be part of the environment. Agents also learn a pa-
rameterised policy, called the actor, directly and use the learned Q-values as a critic. The actor
and critic are combined in the objective function, which in our case is the SER criterion. As
described in Section 2.4.5, agents ascend on the gradient of this objective function in order to
optimise their policy.
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4.2 Cooperative Communication

The first setting we study involving actual communication, places the agents in a cooperative
setting. In this case, a cooperative settings means that agents are coordinating their policies
towards an optimal joint policy. To accomplish this, in each round the leader first samples an
action from their policy and communicates this to the follower. The follower agent is then able
to update their policy before they select an action. This setup closely resembles the iterated
best response algorithm, which is an algorithm that can be used in single-objective games to
converge to NE by in each episode assuming one player has a stationary policy and letting the
other player adjust their policy to this (Bopardikar et al., 2017; Chen et al., 2017). We show the
complete algorithm in Algorithm 6. For clarity reasons we will sometimes refer to this setting in
the future as the cooperative action communication setting.

Algorithm 6 Cooperative communication actor-critic

for each player do
Initialise learning rates αQ and αθ and decays dQ and dθ
For each action a ∈ A, opponent action a′ ∈ A′ and with d ≥ 2 objectives, initialise vectorial
joint action-value Q(a, a′)← 0

Initialise θ = 0 and π(a = ai|θ) = eθi∑|A|
j=1 e

θj

end for
for each episode do

for each player do
if player is the leader then

Generate a new message m by sampling from the policy m = a ∼ π(a|θ)
else

Observe message m
end if

end for
for each player do

if player is the leader then
Play action a = m

else
calculate objective function: J(θ) = u

(∑
a∈A π(a|θ)Q(a,m)

)
Update policy parameters: θ ← θ + αθ∇J(θ)
Sample action a ∼ π(a|θ)

end if
Observe payoff vector p ∈ Rd and opponent action a′

Q(a, a′)← Q(a, a′) + αQ [p−Q(a, a′)]
calculate objective function: J(θ) = u

(∑
a∈A π(a|θ)Q(a, a′)

)
Update policy parameters: θ ← θ + αθ∇J(θ)
Decay learning rates: αQ ← dQαQ and αθ ← dθαθ

end for
end for

The first step of this algorithm is to initialise each agent correctly. Note that in this setting,
agents learn a joint-action multi-objective Q-table. Following the initialisation phase, in each
episode the leader samples a new action from their policy and communicates this. In the next
step, the leader is forced to actually play their committed action. On the other hand, the follower
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is able to select the correct Q-values from the table as it knows what action the leader will play.
It then uses these Q-values to update its internal parameters θ and policy π. After having
performed this update, the agent simply samples a new action from their policy. The next phase
of the algorithm lets both agents observe the reward and each others action, after which they
update their respective Q-table, parameters and policy. Lastly, agents decay their learning rate
parameters to ensure convergence.

As an example of this algorithm in action, say that agent 1 is going to play action 1 in the
next episode. Agent 2 will use this message to select the correct column from its Q-table. These
Q-values are then used in the actor-critic algorithm to update the policy. We show a visual
representation of this algorithm in action in Figure 4.1.

Agent 1 Agent 2

I will play action 1
Select column 1 Update the parameters 

using the selected Q-values

Figure 4.1: The communication approach in a cooperative setting.

4.3 Self-Interested Communication

In the self-interested setting we use the same approach of letting the leader communicate an
action, but we introduce radically different learning dynamics. Concretely, instead of agents
optimising for a single joint policy, agents are now completely self-interested. When playing the
role of follower, hereby simply referred to as following, agents learn a best response policy to each
message that can be received and use this to select an optimal counter action. When playing the
role of leader, referred to as leading, agents learn a specific communication policy that results
in the optimal returns for them. In other words, while leading agents learn a policy that is the
least exploitable by the follower agent. We show the complete algorithm in Algorithm 7. As this
setting introduces mechanisms that allow the following agent to exploit the leader’s message,
we can consider this a competitive communication setting. It therefore presents an interesting
contrast to our earlier cooperative communication setting.

In this algorithm, we again first initialise both agents. To accommodate for the self-interested
dynamics, agents are now required to initialise two Q-tables, one independent action Q-table
when leading and one joint-action Q-table when following. This also requires agents to learn
a messaging policy when leading with parameters θmsg and a set of policies with parameters
θJA when following, specifically one for each possible message that can be received. The next
phase is identical to the previous setting, in that the leader simply samples a new message from
their messaging policy and the follower observes this message. In the following phase, the leader
plays their communicated message, while the follower is able to select an action from their best
response policy. After observing the payoff from the episode, both agents update the Q-table
and policy that was used and finally decay the learning rates to ensure convergence.

We show an illustration of this setting in Figure 4.2. In this example, the leader tells the
follower that they will play action one, which enables the follower to select their best response
policy and sample an action from this policy.
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Algorithm 7 Self-interested communication actor-critic

for each player do
Initialise learning rates αQ and αθ and decays dQ and dθ
For each action a ∈ A and with d ≥ 2 objectives, initialise vectorial message-value
Qmsg(a)← 0

Initialise θmsg = 0 and πmsg(a = ai|θmsg) = eθi∑|A|
j=1 e

θj

For each action a ∈ A, opponent action a′ ∈ A′ and with d ≥ 2 objectives, initialise vectorial
joint action-value QJA(a, a′)← 0

Initialise θJA = 0|A′|×|A| and πJA(a = ai|a′,θJA) = e
θ
a′,i∑|A|

j=1 e
θ
a′,j

end for
for each episode do

for each player do
if player is the leader then

Generate a new message m by sampling from the message policy m = a ∼ πmsg(a|θmsg)
else

Observe message m
end if

end for
for each player do

if player is the leader then
Play action a = m

else
Sample action a ∼ πJA(a|m,θJA)

end if
Observe payoff vector p ∈ Rd
if player is the leader then
Qmsg(a)← Qmsg(a) + αQ [p−Qmsg(a)]
calculate objective function: J(θmsg) = u

(∑
a∈A πmsg(a|θmsg)Qmsg(a)

)
Update policy parameters: θmsg ← θmsg + αθ∇J(θmsg)

else
QJA(m, a)← QJA(m, a) + αQ [p−QJA(m, a)]
calculate objective function: J(θJA) = u

(∑
a∈A πJA(a|m,θ)QJA(m, a)

)
Update policy parameters: θJA ← θJA + αθ∇J(θJA)

end if
Decay learning rates: αQ ← dQαQ and αθ ← dθαθ

end for
end for

Select response policy

Agent 1 Agent 2

I will play action 1

Figure 4.2: The communication approach in a self-interested setting.
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4.4 Policy Communication

In this setting, we again assume agents are in a cooperative situation, but move away from pure
action communication. Instead, in each episode the leader will communicate their entire policy
after which the follower is able to update their own policy in response. This approach is very
similar to the cooperative setting described previously and therefore also closely resembles the
iterated best response algorithm. We show the algorithm designed for use in this setting in
Algorithm 8.

Algorithm 8 Policy communication actor-critic

for each player do
Initialise learning rates αQ and αθ and decays dQ and dθ
For each action a ∈ A, opponent action a′ ∈ A′ and with d ≥ 2 objectives, initialise vectorial
joint action-value Q(a, a′)← 0

Initialise θ = 0 and π(a = ai|θ) = eθi∑|A|
j=1 e

θj

Initialise an opponent policy: π′(a′) = 1
|A′|

end for
for each episode do

for each player do
if player is the leader then

Select the current policy π(a = ai|θ) as the message m
else

Observe message m
end if

end for
for each player do

if player is the leader then
Sample action a ∼ π(a|θ)

else
Update opponent policy: π′ = m
calculate objective function: J(θ) = u

(∑
a∈A π(a|θ)

∑
a′∈A′ π

′(a′)Q(a, a′)
)

Update policy parameters: θ ← θ + αθ∇J(θ)
Sample action a ∼ π(a|θ)

end if
Observe payoff vector p ∈ Rd and opponent action a′

Q(a, a′)← Q(a, a′) + αQ [p−Q(a, a′)]
calculate objective function: J(θ) = u

(∑
a∈A π(a|θ)

∑
a′∈A′ π

′(a′)Q(a, a′)
)

Update policy parameters: θ ← θ + αθ∇J(θ)
Decay learning rates: αQ ← dQαQ and αθ ← dθαθ

end for
end for

As we can see here, the initialisation phase is almost identical to the cooperative action
communication setting, with the difference that agents now also initialise an opponent policy.
During the learning phase, the leader will first send their policy as a message. Upon receiving
this communication, the follower uses the observed message to update its belief of the opponent
policy. They then use this opponent policy to marginalise over the joint-action Q-table and
calculate their objective function. After taking a step on the gradient of this function, agents
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sample an action from the improved policy. The rest of the algorithm goes in accordance to the
cooperative action communication approach.

Again, we show an illustration of this approach in practice in Figure 4.3. In this example,
the leader communicates their current policy to the follower. The follower uses this policy to
calculate their expected Q-values and utilises these values to update their policy in response.

Agent 1 Agent 2

My current policy is 

Use  to marginalise 
 over joint action values

Update the parameters 
using the marginalised Q-values

Figure 4.3: A cooperative setting with entire policy communication rather than single action.

It is important tot note that while we do have a cooperative policy communication setting,
we do not have a self-interested policy communication setting. The reason for this is that in our
current self-interested setup, each agent learns a distinct best response policy to each possible
message they can receive. However, when communicating entire action distributions, we are
dealing with continuous messages. If we were to extend policy communication to this setting as
well, that would imply leaving the discrete actor-critic algorithm we use now and designing a
more complex actor-critic approach. We discuss these ideas for future work more thoroughly in
Section 6.

4.5 Hierarchical Communication

The last setting we consider in this work investigates the desirability of continuous communica-
tion. In the hierarchical approach to communication, instead of forcing the leader to communi-
cate in each round, we let agents learn whether they benefit from communication or not. For
this reason, we will sometimes refer to this approach as the optional communication setting. In
practice, each agent can be seen of as being composed of a top-level policy and two lower level
policies. The first lower level policy is used when the leader chooses not to communicate and
the other lower level policy is used when they do opt to communicate. The top-level policy is
then in charge of deciding which of the lower level policies to employ. In each round, the leader
is in charge of choosing which lower level policy they use and the follower selects an action with
the same lower level policy in response. This approach thus enables agents to learn optimal
communication strategies, possibly by communicating only parts of the time. Important to note
is that we design our algorithms so that each previous communication setting can be used as the
lower level policy. This enables us to measure the willingness of agents to use each approach.
We show the concrete algorithm in Algorithm 9.

In the initialisation phase, we first initialise our two lower level policies. We subsequently
initialise the learning rates for the top level policy as well and create a simple Q-table with two
entries, one for the expected returns of using the communicating policy and one for the not
communicating policy. Lastly, we initialise our top-level policy in charge of deciding which lower
level policy to use. In the next phase, the leader decides which low-level policy to use and sends
a message using this policy. After observing the message, the follower samples an action from
the same policy by following the required steps as laid out by this policy. After both agents play
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Algorithm 9 Hierarchical communication actor-critic

for each player do
Initialise two lower level policies pi: A no-communication and a communication policy
Initialise learning rates αQ and αθ and decays dQ and dθ
For each lower level policy p and with d ≥ 2 objectives, initialise vectorial action-value
Q(p)← 0

Initialise θ = 0 and a top level communication policy π(p = pi|θ) = eθi∑2
j=1 e

θj

end for
for each episode do

for each player do
if player is the leader then

Select the low-level policy using the top-level policy: p ∼ π(p|θ)
if p is communicating then

Select a message m from p
else
m = None

end if
else

Observe message m
end if

end for
for each player do

Sample action a from same policy p given m
Observe payoff vector p ∈ Rd and opponent action a′

Q(p)← Q(p) + αQ [p−Q(p)]

calculate objective function: J(θ) = u
(∑2

p π(p|θ)Q(p)
)

Update policy parameters: θ ← θ + αθ∇J(θ)
Update policy p used in this episode
Decay learning rates: αQ ← dQαQ and αθ ← dθαθ

end for
end for

their actions, the reward vector and opponent action are observed and each agent updates their
top-level policy, as well as the lower level policy that was actually used in the episode. Lastly,
we also decay the learning rates to assure convergence as in all other algorithms.

In Figure 4.4, we show an illustration of the hierarchical approach. In this illustration, the
leader first decides which lower level policy to use and samples a message from this policy. After
sending this message, the follower would respond with the same lower level policy.

Leader

Communicate

Don't
communicate

Choose whether to  
communicate or not

 or None

Sample a message 

Figure 4.4: A hierarchical approach to communication in which the leader is able to decide
whether they actually wish to communicate or not.
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Chapter 5

Experimental Results for
Communication

In this chapter, we first detail the general setup of our experiments and subsequently present our
empirical findings concerning communication in MONFGs. As discussed in Chapter 4, we have
devised five different communication setting. Out of these five settings, we create a total of seven
experimental setting, as the hierarchical approach allows for different lower level communication
policies. We discuss our empirical findings, pointing out remarkable differences between different
approach and the impact on the learning curve that communication can have. Several empirical
results presented in this chapter have also been published in Röpke et al., 2021.

5.1 Games

In order to evaluate our communication approaches, we analyse our approaches on a total of five
different MONFGs. These MONFGs have also been used in other impactful studies (Rădulescu,
Mannion, Zhang, et al., 2020; Rădulescu, Verstraeten, et al., 2020; Zhang et al., 2020). In these
games, we always consider a vectorial payoff with regards to two objectives p = [p1, p2] which is
the same for both agents. Note that because the agents receive the same reward vector, we only
show this once in each matrix. We use the following utility function for player 1, also referred to
as the row player:

u1([p1, p2]) = p1 × p1 + p2 × p2 (5.1)

and the utility function in Equation 5.2 for player 2, also called the column player:

u2([p1, p2]) = p1 × p2 (5.2)

As previously mentioned, it has been shown that in MONFGs when optimising for the SER
criterion, there need not be a Nash equilibrium. For this reason, we first include two games
that don’t posses an NE. Previous work has shown that even in such games, agents resort to
playing an acceptable middle ground. As this middle ground does not constitute a NE, neither
agent truly prefers it but due to the learning rate decay in the system will converge to anyhow.
Our three other games all contain at least one pure strategy NE. There are currently no known
algorithms that are able to calculate mixed-strategy NE in MONFGs under SER, which is why
we focus on pure strategies for the most part. Note that we only consider equilibria under SER
in these games, as this is the main focus of this work.

43
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5.1.1 Game 1: (Im)balancing act game

In Table 5.1 we show the multi-objective payoff vector for the first game, called the (im)balancing
act game. It can be shown that there exist no Nash equilibria in the (im)balancing act game
under SER (Rădulescu, Mannion, Zhang, et al., 2020). This is due to the fact that the utility
function of agent 1 leads this agent to prefer the most imbalanced payoff vector, while agent 2
aims for the most balanced payoff vector. If the expected payoff vector is balanced, agent 1 will
have an incentive to deterministically take action L or R. On the other hand, if the expected
payoff vector is imbalanced, agent 2 has an incentive to compensate. This dynamic thus leads
to the fact that no NE exists in this game.

L M R
L (4, 0) (3, 1) (2, 2)
M (3, 1) (2, 2) (1, 3)
R (2, 2) (1, 3) (0, 4)

Table 5.1: Game 1 - The (im)balancing act game. This game has no NE under SER.

5.1.2 Game 2: (Im)balancing act game without M

In Table 5.2 we show the multi-objective payoff vector for the second game, which is the
(im)balancing act game without action M. As shown by Rădulescu, Mannion, Zhang, et al.,
2020, this game still has the same dynamics as the original game. For this reason, there are also
no NE in this game.

L R
L (4, 0) (2, 2)
R (2, 2) (0, 4)

Table 5.2: Game 2 - The (im)balancing act game without M. This game also has no NE under
SER.

5.1.3 Game 3: (Im)balancing act game without R

In Table 5.3 we show the multi-objective payoff vector for the third game, which is the (im)balancing
act game without action R. Contrary to Game 5.2, where leaving out the middle action did not
result in meaningful changes to the dynamics of the game, leaving out the right action does
in fact accomplish this. Specifically, under SER it is trivial to see that there is now one pure
strategy NE, namely (L, M). This results in a utility of 10 for agent 1 and 3 for agent 2.

L M
L (4, 0) (3, 1)
M (3, 1) (2, 2)

Table 5.3: Game 3 - The (im)balancing act game without R. The highlighted cell denotes a pure
strategy NE.
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5.1.4 Game 4: A 2-action game with pure Nash equilibria

In the fourth game, we move away from the (im)balancing act game and instead introduce
different dynamics. We show the multi-objective payoff table in 5.4. Under SER we now find
two pure NE, namely (L, L) and (M, M). The first joint strategy results in a utility of 17 for
agent 1 and 4 for agent 2. The second joint strategy results in a utility of 13 for agent 1 and 6
for agent 2. As such, the first NE is preferred by agent 1, while the second NE is preferred by
the other agent. This can introduce interesting learning dynamics as both agents are potentially
inclined to optimise for a different NE. We will come back to this later when discussing the
results obtained by learning agents in this game.

L M
L (4, 1) (1, 2)
M (3, 1) (3, 2)

Table 5.4: Game 4 - A 2-action game with two pure NE under SER. The highlighted cells signify
these NE.

5.1.5 Game 5: A 3-action game with pure Nash equilibria

The last game we use for the experimental validation of our communication approaches is an
extension of the previous game, but introduces yet another dynamic. We first show this game in
Table 5.5. In this game, there are three pure NE, namely (L, L), (M, M) and (R, R). The joint
strategy (L, L) leads to a utility of 17 for agent 1 and 4 for agent 2. On the other hand (M,
M) results in a utility of 13 for agent 1 and 6 for agent 2. Finally, (R, R) results in a utility of
10 and 3 for the agents respectively. Upon examining these NE, we can see that agent 1 prefers
the joint strategy (L, L), while agent two prefers (M, M). In fact, no agent prefers (R, R) as it
is Pareto dominated by the other two pure strategy NE. We analyse the agents’ ability to avoid
converging to this dominated strategy when discussing our results in the following section.

L M R
L (4, 1) (1, 2) (2, 1)
M (3, 1) (3, 2) (1, 2)
R (1, 2) (2, 1) (1, 3)

Table 5.5: Game 5 - A 3-action game with three pure NE under SER. The highlighted cells
signify these NE.

5.2 Experiments

In this section, we show the results of the different types of experiments that we have performed.
We also discuss these results in depth, highlighting the impact of different types of communication
on the final joint strategies and equilibria that are being played. For each experiment, we show
figures for the scalarised expected returns over time, action selection probabilities over time and
the empirical state distribution of the last 10% of episodes. In several sections, we omit some
figures in order to keep our results and discussion clear. We provide the remaining figures as an
appendix.
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Each experiment was ran for 5000 episodes and averaged over 100 trials. We note that we
do not show the full episode length in our figures, but rather focus on the first 1000 to 1500
episodes. In our experiments, this has shown to be enough for convergence and allows us to
present the outcomes with more detail. Next, each episode was played for a rollout period of
100 executions where the agents were only allowed to play their policies but not update them.
This allows us to accurately measure the SER of a particular policy at a specific time and the
action distribution of that policy. In theory, it is also possible to calculate the SER and action
probabilities analytically. Indeed, this was one of our earlier approaches, however as there are
complex calculations involved, this strategy has shown to be error prone. Moreover, it would
make the proposed communication framework less general, as for example policies using neural
networks can not feasibly be analysed with analytical methods for our purposes. Lastly, we have
used a learning rate for all Q-values and parameters θ of 0.05, except when explicitly mentioned
otherwise.

5.2.1 No communication

The first results we show are for the learning agents without any form of communication. We can
see the baseline performance for each game in terms of SER in Figure 5.1, the action probabilities
for agent 1 in Figure 5.2, for agent 2 in Figure 5.3 and finally the empirical state distribution for
the last 10% of episodes in Figure 5.4.
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Figure 5.1: The scalarised expected returns for both agents when learning in our set of benchmark
games without the use of communication.

In the games without NE, we can see the same pattern throughout all figures. Concretely, we
see that the agents are still able to reliably converge on some compromise. This is especially clear
in the state distribution figures (i.e. Figures 5.4a and 5.4b). In the first game, agents converge
on playing (R, L) and (L, R) most of the time and sporadically (M, M) all with a payoff of [2, 2].
We can attribute this to the fact that the row player, who wants the most unbalanced payoffs,
prefers either the first or last row. The second player on the other hand prefers the most balanced



5.2. EXPERIMENTS 47

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
pr

ob
ab

ilit
y

L
M
R

(a) Game 1

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
pr

ob
ab

ilit
y

L
R

(b) Game 2

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
pr

ob
ab

ilit
y

L
M

(c) Game 3

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
pr

ob
ab

ilit
y

L
M

(d) Game 4

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
pr

ob
ab

ilit
y

L
M
R

(e) Game 5

Figure 5.2: The action probabilities for the first agent when learning in our set of benchmark
games without the use of communication.
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Figure 5.3: The action probabilities for the second agent when learning in our set of benchmark
games without the use of communication.

payoff, meaning [2, 2] in this case. As this player has the most to lose from receiving in a payoff of
[4, 0] or [3, 1], they have the strongest incentive to steer the outcome to one of the aforementioned
strategies. Our claim that this player has the most to lose can be easily substantiated by first
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Figure 5.4: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games without the use of communication.

noticing that agent 2 will never be incentivised to play a strategy resulting in [4, 0], as this leads
to a utility of 0 for them. We might still wonder why agents then do not play a strategy resulting
in [3, 1] more often. Recall however that for agent one, the utility obtained from [2, 2] is 8 and
from [3, 1] is 9 with a difference of 1. Player two on the other hand receives a utility of 4 for the
first payoff and 3 for the second, also with a difference of 1. Note that for player 1 the difference
between 9 and 8 is relatively smaller than the difference between 4 and 3 for player two and as
such this last player has the bigger incentive to end up in a joint-strategy playing [2, 2].

In the other three games, there are in fact NE that can be reached. First, in Game 3 we see
that the NE of (L, M) is played most of the time. From the column player’s perspective, this
is logical as they will always prefer to play M, because it presents the best possible outcomes
for this agent. The second agent on the other hand plays the NE with a high probability, but
converges to playing the suboptimal action a small amount of the time as well. This can be
attributed to the fact that this agent does not lose a terrible amount when ending up in (M,
M), and as such is less inclined to completely avoid this action. Lastly, we see the same story in
Game 4 and 5 in that the agents are able to play the NE most of the time. We also remark that
agents mostly play the equilibrium favouring the second agent. Just as in the games without
NE, this can be attributed to the fact that this agent has the most to lose from playing another
equilibrium. As such, agent 2 has the largest incentive not to play this NE. Interesting to note
for Game 5 also is that agents are able to successfully avoid the dominated NE with a very high
likelihood and rather converge to playing the two non-dominated NE most often.

One clear pattern that we can already see here, and that will further demonstrate itself in
later experiments as well, is that results in games without NE are all extremely similar to each
other. On the other hand, results in games with NE also appear mostly analogous. This in itself
presents the interesting conclusion that the communication techniques described in this work
appear to be generalise well in both types of games.

5.2.2 Cooperative Communication

In this section, we show the results for the experiments with cooperative action communication.
In Figure 5.5 we show the SER over time for both agents and in Figure 5.6 the empirical state dis-
tribution plots. We show the figures detailing the action distribution for both agents in Appendix
A as they are extremely similar to the results for the experiments without communication.

From these figures, we can immediately discern two interesting results. First, from Figure
5.5 we see generally a more directed learning curve. Concretely, this means that agents learn the
same policies as in the experiments without communication, but once they begin learning the
optimal policy converge to this more rapidly. This manifests itself in games without NE in the
fact that the initial bump in the learning curve is now smaller, meaning there is less divergence
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Figure 5.5: The scalarised expected returns for both agents when learning in our set of benchmark
games with cooperative action communication.
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Figure 5.6: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with cooperative action communication.

from the middle ground that agents end up playing. In games where there are NE, we see that
cooperative action communication leads to a moderately steeper learning curve.

The second interesting result is that in Game 5, where there is a dominated NE, agents
appear more likely to end up playing this equilibrium. In fact, even when performing the same
experiments and calculating the exact results analytically this result persists (Röpke et al., 2021).
We can attribute this dynamic to the double update by the follower agent. In the earlier episodes,
the leader will communicate an action purely at random as their policy has not yet learned any
meaningful behaviour. The follower in turn is able to optimise their policy with regards to this
message. After the episode is finished, both agents again update their policy. In the earlier
episodes, if due to chance an action which is part of the dominated NE is selected as the message
too often, agents can get stuck optimising for this equilibrium too quickly and not spend sufficient
time investigating other options. This drawback is not easily resolvable, as it is intrinsic to the
communication approach used in this setting.

Finally, in the empirical state distributions we can see that our hypothesis that agents end
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up playing the same strategies as without communication is in fact correct. We see virtually
no difference with previous results, with small discrepancies being attributed to statistical noise.
We note this result in the action distribution figures as well.

5.2.3 Self-Interested Communication

In the self-interested communication setting, agents are now able to select their best response
policy with regards to the obtained message. We observe that this dynamic can give rise to a
novel solution concept which had not previously been described in this setting, namely cyclic
Nash equilibria. It is especially clear in Figure 5.5 for the SER and Figures 5.8 and 5.9 for the
action probabilities.
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Figure 5.7: The scalarised expected returns for both agents when learning in our set of benchmark
games with self-interested action communication.

Here we see that agents end up playing a different strategy when leading and when following.
We can attribute this to the fact that agents can learn the strategy that suits their self-interest
best when leading and have to react optimally when following. This is especially clear in the
games where there are multiple NE. In this case, leading agents have the advantage that they can
freely select the NE that results in the best outcome for them. By announcing their action that
is part of this NE, they essentially force the other agent to play their part of this equilibrium,
which is a direct consequence of the definition of a NE.

Another interesting result we are able to see here, is the difference between learned strategies
in games without NE in comparison with other communication experiments. In previous exper-
iments, agents were still able to reliably converge to playing a sort of middle ground. However
in the case of self-interested communication, agents appear much less likely to converge to such
a middle ground and instead often converge on some arbitrary policy instead. This is also quite
logical by the definition of a NE. In games without NE, announcing which action an agent will
play next can always be exploited by the follower. This will lead agents to learn different policies



5.2. EXPERIMENTS 51

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n 

pr
ob

ab
ili

ty

L
M
R

(a) Game 1

0 200 400 600 800 1000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n 

pr
ob

ab
ili

ty

L
R

(b) Game 2

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n 

pr
ob

ab
ili

ty

L
M

(c) Game 3

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n 

pr
ob

ab
ili

ty

L
M

(d) Game 4

0 250 500 750 1000 1250 1500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n 

pr
ob

ab
ili

ty

L
M
R

(e) Game 5

Figure 5.8: The action probabilities for the first agent when learning in our set of benchmark
games with self-interested action communication.
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Figure 5.9: The action probabilities for the second agent when learning in our set of benchmark
games with self-interested action communication.

in different runs, as no single policy will prove to work sufficiently well when leading. We can
see this phenomenon more clearly in state distributions from Figure 5.10.
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Figure 5.10: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with self-interested action communication.

5.2.4 Policy Communication

The next approach that we consider lets agents communicate their entire policy in order to
optimise a single joint policy. This approach is extremely similar to the cooperative action
communication setting, leading us to expect similar results as well. In addition, the limited
action spaces of the MONFGs we employ in this work might magnify these similarities as there
could possibly be insufficient room for major shifts.

Recall that there were two interesting results from this previous setting, namely a more
directed learning curve and a tendency to play dominated NE. It is clear from Figure 5.11 that
the first property still holds.
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Figure 5.11: The scalarised expected returns for both agents when learning in our set of bench-
mark games with cooperative policy communication.

The second property from cooperative action communication stated that agents were more
inclined to play dominated NE. In the case of policy communication however, this appears to
be less of a problem. We show this in the state distributions from Figure 5.12e. The results
now suggest that agents play the dominated NE about as often as without communication, thus
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improving on the earlier approach. We can trace this result back to why cooperative action
communication did suffer from increasingly converging on dominated NE. In that experiment,
the leading agent communicated their next action. To the follower, this appears as a pure
strategy where the agent has a policy that assigns a zero probability to all actions, except
the communicated action that has probability one. As such, the follower has no better option
than to optimise for this pure policy, independent of the actual underlying distribution of the
leader. This can lead agents to get stuck optimising for a suboptimal NE. In this case however,
the leader agent is truthful about their current action distribution, which leads to follower to
more accurately optimise their own policy in response. This approach thus gives agents the
advantages of cooperative action communication, while removing the drawback of increasingly
playing dominated NE.
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Figure 5.12: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with cooperative policy communication.

As the results for the action distributions are very similar to those of the cooperative action
communication experiments, we leave these in Appendix E.

5.2.5 Hierarchical Communication

In this last section, we discuss three additional experiments that we perform by taking a hierar-
chical approach to communication. In the hierarchical approach, agents learn a top-level policy
that decides whether they should communicate or not. If they opt out of communication, they
will behave as in the baseline independent multi-objective actor-critic algorithm. If the agent
chooses to communicate, the message then goes as set out by the other approaches. As such, the
three parts in this section contain one experiment with a low-level communication agent that
uses cooperative action communication, one that uses self-interested action communication and
a last one that uses policy communication. In addition to the figures that we presented in all
other experiments, we also show the top-level policy, meaning how much the agent preferred
communication over no communication. Important to note is that we use a learning rate of 0.01
for both the Q-values and parameters θ of the top-level policy to ensure that agents does not
take too large steps when learning a communication strategy. All other parameters remain the
same as presented earlier.

Hierarchical Cooperative Communication

The first thing that becomes apparent when looking at the SER in Figure 5.13 for hierarchical
cooperative communication is the fact that once again agents can end up playing cyclic policies.
This occurs when one agent prefers communicating, while the other does not. In the self-
interested setting, this occurred when each agent aimed to play a different strategy while leading.
In essence, we can conclude that letting agents learn multiple policies that are used in different
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situations can lead to cyclic policies and cyclic NE. The occurence of cyclic behaviour in this
experiment further implies that strategies learned in this setting are not necessarily equal to
strategies learned when communication was obligated.

It is also interesting to note that the moderately steeper learning curve which was seen in the
cooperative action communication setting does not occur with the hierarchical approach. We
can attribute this to the fact that there is now a larger action space to learn, which slows the
learning process down. We show the related action and state distributions in Appendix C
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Figure 5.13: The scalarised expected returns for both agents when learning in our set of bench-
mark games with optional cooperative action communication.

When looking at the communication probabilities in Figures 5.14 and 5.15 we can see two
general patterns. In games where there are no NE, agents prefer at least some level of communi-
cation. In games where there are NE, agents appear indifferent to communication. This becomes
clear by observing the high variance in communication probabilities, with agents sometimes opt-
ing for 100% communication and other times 100% for no communication. We can explain this
result by first observing that in games where there are NE, agents were perfectly capable of
learning these NE without communication. Additionally, communicating in this setting did not
appear to aid the agents very much, leading them to be indifferent to it. It is possible that this
result does not translate to larger or more complex games, as independent learning will begin
to suffer the consequences of this simplistic approach. We discuss this further in our section on
future work, as communication might still provide a benefit to learning agents in this case.

When looking at the games without NE, having at least some level of communication can
ensure that agents are able to coordinate their strategies to some extent in order to play a
mutually acceptable middle ground. These results are in accordance to previous findings in
single-objective multi-agent settings which showed that in cooperative settings communication
could be beneficial to the agents that were involved (Foerster et al., 2016; Noukhovitch et al.,
2021).
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Figure 5.14: The communication probabilities for the first agent when learning in our set of
benchmark games with optional cooperative action communication.
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Figure 5.15: The communication probabilities for the second agent when learning in our set of
benchmark games with optional cooperative action communication.

Hierarchical Self-Interested Communication

In the results for the hierarchical self-interest setting, we generally see the same picture as in
the obligated communication setting. We show these results in Appendix D. In general, we can
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see that agents learn the same behaviour that results in the returns as before, except for one
caveat. By removing the necessity for agents to communicate each round, they appear more
likely to play the middle ground in games without NE than before. Specifically, this is visible
in the state distribution plots from Figure 5.16a and 5.16b. We can attribute this result to
the fact that agents can learn to reduce communication once it becomes detrimental to their
returns. This is also visible in the communication probabilities for both agents in Figure 5.17
and 5.18. We however do note that agents in these games still prefer at least some level of
communication, around 50%, in order to coordinate their strategies. In games with NE, agents
are again indifferent to communication as they are able to reach the NE without it. We stress
that these communication preferences lead us to believe that communication can be useful in
both cooperative, as well as self-interested settings. This phenomenon was only very recently
remarked in single-objective multi-agent settings as well (Noukhovitch et al., 2021).
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Figure 5.16: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with optional self-interested action communication.
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Figure 5.17: The communication probabilities for the first agent when learning in our set of
benchmark games with optional self-interested action communication.
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Figure 5.18: The communication probabilities for the second agent when learning in our set of
benchmark games with optional self-interested action communication.

Hierarchical Policy Communication

To bring this section on our experimental findings to a conclusion, we present the results of the
hierarchical policy communication approach. Just as in the other hierarchical experiments, we
see the possibility for cyclic policies. In games without NE, agents are still able to play the
middle ground with a high likelihood. In games where there are NE, agents are also able to find
this while succesfully avoiding potentially dominated equilibria. Interesting to note is that just as
the obligated cooperative action communication setting was very similar to the obligated policy
communication setting, adding a hierarchical approach to this mix does not seem to change the
similarities. Indeed, we see that the strategies that are played and the utilities that are obtained
are very similar. The figures for this experiment can be found in Appendix E.

In Figure 5.19 and Figure 5.20, we show the communication probabilities for both agents in
all games. In these figures as well, we see virtually no differences with the hierarchical action
communication setting. When agents are in games without NE, at least some level of communi-
cation is preferred, as it helps the agents to coordinate. In games with NE, agents are yet again
indifferent as they are able to find the NE on their own.
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Figure 5.19: The communication probabilities for the first agent when learning in our set of
benchmark games with optional cooperative policy communication.
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Figure 5.20: The communication probabilities for the second agent when learning in our set of
benchmark games with optional cooperative policy communication.



Chapter 6

Conclusion and Future Outlook

In this thesis, we study multi-objective multi-agent settings from a game-theoretic and a rein-
forcement learning perspective. By looking out into the real world, we see numerous examples of
such settings. This work itself is an excellent example, as it has been a cooperation between the
author and their supervisors. On the other hand, when looking at the objectives of the author
and supervisors, we see that here too there are multiple. These objectives range from getting high
grades to being on time and feeling proud of the final work. It is also clear that these objectives
do not hold the same significance for each individual. Indeed, the author might strongly favour
getting high grades. At the same time, the supervisors could place more importance on feeling
proud, especially given that they potentially have to divide their energy and time over multiple
students. Although these particular objectives might be aligned and not conflicting, humans in
general often have a multitude of conflicting objectives. Studying multi-objective multi-agent
systems can thus provide many real-world benefits.

Concretely, in this thesis we consider MONFGs and ask ourselves two important open ques-
tions about this setting. Our first research question was how equilibrium strategies relate to
each other under different optimisation criteria in MONFGs. Our second research question ap-
proaches the setting of MONFGs from a learning perspective. Specifically, what impact does
communication have on the behaviour of learning agents in these settings?

In Chapter 2 we present an overview of an interdisciplinary body of work containing vital
background for the remainder of this thesis. We add our first contributions in Chapter 3 where we
adopt a theoretical perspective to show several novel properties in MONFGs. First, we showed
by construction that in a MONFG with at least one NE under SER and ESR, the sizes of the sets
of NE need not be equal. Moreover, we used the same construction to show that if both settings
have at least one NE, their sets of NE may be disjoint. For the remainder of this chapter, we
studied whether pure strategy NE are potentially shared throughout both optimisation criteria.
It turns out that sometimes they are and sometimes they are not. Specifically, we formally
showed that a pure strategy NE under ESR must also be a NE under SER. While we proved
that the inverse does not necessarily hold, we subsequently were able to show that assuming each
utility function in the system to be convex allows us to state that a pure strategy NE under SER
is also a NE under ESR.

In the following chapters, we set out to answer the learning question. What impact does
communication have on the behaviour of learning agents in these settings? When looking at
humans, we see that communication plays a key part in our behaviour. To once again use this
thesis as an example, without communication between the author and their supervisors, it would
not have turned out this way. By utilising this inspiration, we set out to design novel algorithms
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that enable learning agents to communicate in a repeated MONFG. In Chapter 4, we describe
these algorithms and go into detail about the communication approaches we study. We base our
communication methods on the concept of Stackelberg games, in which one agent is the leader
and communicates a specific message. In contrast, the other agent is the follower and is able to
respond to this message. The first setting we design places agents in a cooperative setting where
they try to optimise for a single joint policy. Then, the leading agent communicates the next
action they will play, after which the following agent updates their policy in response before action
selection. The second setting uses this same action communication mechanism, but rather than
optimising for a single joint policy, agents are now entirely self-interested. This means that when
following, an agent learns distinct best response policies to each possible message that can be
received. When leading on the other hand, they learn a specific messaging policy. Next, we create
a cooperative setting similar to the one before, but rather than letting the leader communicate
their next action, they are forced to communicate their entire current policy. Lastly, we take a
hierarchical approach to communication in which agents can learn for themselves whether they
wish to communicate or not. We design this setting so that each of the algorithms described
previously can be used to measure the willingness of agents to use this specific approach.

In Chapter 5, we present our experimental methodology. We introduce our set of benchmark
games and subsequently show the results of our algorithmic approaches to these games. One
clear pattern that manifested itself over all experiments was that our agents’ behaviour in games
without NE was consistent throughout all games. Moreover, the behaviour of agents in games
with NE was also consistent all through the different games. From this insight, we can conclude
that our communication approaches generalise well in both types of games.

In the experiments with cooperative action communication, we see that agents obtain a mod-
erately steeper learning curve when there are NE in the game and diverge less from playing a
compromise policy when no NE exist in the game. A less desirable attribute that we noted in this
experiment was that agents had a larger tendency to play dominated NE. In the self-interested
action communication setting, we noted the first occurrence of cyclic NE in MONFGs. We at-
tributed this phenomenon to the fact that agents were now able to act entirely for their own
gain and as such played different strategies when communicating and when not. Additionally,
we found that in games without NE, agents were unable to converge on the same middle ground
as before, as each message could effectively be exploited by the following agent.

When placing agents in a cooperative setting with policy communication, we saw similar re-
sults as in the cooperative action communication approach. We however did note an interesting
improvement, which was that agents were once again able to successfully avoid dominated NE
most of the time. We credit this property to the fact that agents were now truthful about their
uncertainty at any given point in time, which enabled the follower to make better updates. In
our last set of experiments, we allowed agents to take a hierarchical approach to communication.
Concretely, agents were now able to learn whether they wanted to communicate or not. Our
most important empirical finding for these experiments was that agents in games without NE
preferred to communicate at least part of the time. We hypothesised that this stems from the fact
that communication can help those agents to coordinate a joint policy that leads to an accept-
able compromise. In games where there were NE, agents appeared indifferent to communication,
sometimes communicating all the time and sometimes never. This proved to be sensible as the
benchmark games showed to be simple enough for independent agents to accurately learn the
NE, with or without communication.

After discussing the important insights and empirical findings of this thesis, we are now able
to take a glance into the future. First, in this thesis we discuss some novel properties of MONFGs
that were not previously shown. However, many more theoretical open questions remain. It can
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be shown that in general, no NE need exist in MONFGs when optimising for the SER criterion
(Rădulescu, Mannion, Roijers, et al., 2020). Specific results for smaller classes of games on the
other hand remain open questions. In the context of single-objective NFGs for example, the
class of two-player zero-sum games can be solved using linear programming (Tardos & Vazirani,
2007). It remains to be seen whether such approaches can be adapted for MONFGs.

In the design of our algorithms, we first detailed our ambition to study settings with coop-
erative as well as self-interested dynamics. We have done precisely this with regards to action
communication. In our policy communication approach however, we were compelled to only de-
sign this setting for cooperative dynamics. In the self-interested setting, we allow agents to learn
a distinct best response policy to each possible message they might receive by utilising a discrete
actor-critic algorithm. If we were to attempt designing a self-interested policy communication
approach, this would necessarily imply that we leave this approach. This is because policies
are continuous probabilities over actions, meaning that it becomes impossible to learn a best
response policy to each message that can be received. In the future, it could prove interesting to
study whether deep Q-networks (Mnih et al., 2015) could be used to learn approximate Q-values
for communicated policies. For example, independent agents could learn to map an input policy
from the leading agent to a best response strategy for the following agent. Utilising neural net-
works for independent agents has also been used with success in single-objective MARL (Tampuu
et al., 2017).

Next, in our empirical evaluation of the proposed algorithms, we used reasonable small-scale
MONFGs. It would be interesting to study what happens when the action space grows larger
or even more objectives need to be taken into account. We would argue that communication
becomes more critical, as independent learners will struggle to learn an optimal joint policy.

Finally, we could ask ourselves what happens when we leave the relatively simple setup of
learning in MONFGs and instead look to stateful settings such as MOSGs. Introducing more
complicated dynamics would require more intricate algorithms. These approaches would likewise
benefit from communication, as it becomes increasingly difficult to learn without such auxiliary
methods. Apart from some notable examples (Mannion, 2017), the setting of MOSGs under
both SER and ESR remains understudied. In addition, while the theoretical properties of single-
objective SGs are well studied in game theory, they remain almost completely unexplored in our
multi-objective setting (Rădulescu, Mannion, Roijers, et al., 2020). We believe that extending
the concept of Nash equilibria under SER and ESR to this setting is likely to provide fasci-
nating insights. As such, the setting of MOSGs presents a promising direction for future work
(Rădulescu, Mannion, Roijers, et al., 2020).
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Mihaylov, M., Tuyls, K., & Nowé, A. (2010). Decentralized Learning in Wireless Sensor Networks.
In M. E. Taylor & K. Tuyls (Eds.), Adaptive and learning agents (pp. 60–73). Springer
Berlin Heidelberg.

Mitchell, T. M. (1997). Machine Learning (1st ed.). McGraw-Hill, Inc.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518 (7540), 529–533.
https://doi.org/10.1038/nature14236

Nakayama, H., Tanino, T., & Sawaragi, Y. (1981). Stochastic Dominance for Decision Problems
with Multiple Attributes and/or Multiple Decision-Makers. IFAC Proceedings Volumes,
14 (2), 1397–1402. https://doi.org/10.1016/S1474-6670(17)63673-5

Nash, J. (1951). Non-Cooperative Games. The Annals of Mathematics, 54 (2), 286. https://doi.
org/10.2307/1969529

New, M., & Hulme, M. (2000). Representing uncertainty in climate change scenarios: a Monte-
Carlo approach. Integrated Assessment, 3 (1), 203–213. https ://doi .org/10.1023/A:
1019144202120

Noukhovitch, M., LaCroix, T., Lazaridou, A., & Courville, A. (2021). Emergent Communication
under Competition. Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, 974–982.
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Pita, J., Jam, M., Ordóñez, F., Portway, C., Tambe, M., Western, C., Paruchuri, P., & Kraus, S.
(2009). Using game theory for los angeles airport security. AI Magazine, 30 (1), 43–57.
https://doi.org/10.1609/aimag.v30i1.2173

Posor, J. E., Belzner, L., & Knapp, A. (2020). Joint Action Learning for Multi-Agent Cooperation
using Recurrent Reinforcement Learning. Digitale Welt, 4 (1), 79–84. https://doi.org/
10.1007/s42354-019-0239-y
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Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based
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Figure 6.1: The action probabilities for the first agent when learning in our set of benchmark
games with cooperative action communication.
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Figure 6.2: The action probabilities for the second agent when learning in our set of benchmark
games with cooperative action communication.
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Figure 6.3: The action probabilities for the first agent when learning in our set of benchmark
games with cooperative policy communication.
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Figure 6.4: The action probabilities for the second agent when learning in our set of benchmark
games with cooperative policy communication.
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Figure 6.5: The action probabilities for the first agent when learning in our set of benchmark
games with optional cooperative action communication.
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Figure 6.6: The action probabilities for the second agent when learning in our set of benchmark
games with optional cooperative action communication.
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Figure 6.7: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with optional cooperative action communication.



D. HIERARCHICAL SELF-INTERESTED COMMUNICATION 73

D Hierarchical Self-Interested Communication

0 200 400 600 800 1000
Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

ar
is

ed
 E

xp
ec

te
d 

R
et

ur
ns Agent 1

Agent 2

(a) Game 1

0 200 400 600 800 1000
Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

ar
is

ed
 E

xp
ec

te
d 

R
et

ur
ns Agent 1

Agent 2

(b) Game 2

0 250 500 750 1000 1250 1500
Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

ar
is

ed
 E

xp
ec

te
d 

R
et

ur
ns Agent 1

Agent 2

(c) Game 3

0 250 500 750 1000 1250 1500
Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

ar
is

ed
 E

xp
ec

te
d 

R
et

ur
ns Agent 1

Agent 2

(d) Game 4

0 250 500 750 1000 1250 1500
Episode

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sc
al

ar
is

ed
 E

xp
ec

te
d 

R
et

ur
ns Agent 1

Agent 2

(e) Game 5

Figure 6.8: The scalarised expected returns for both agents when learning in our set of benchmark
games with optional self-interested action communication.
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Figure 6.9: The action probabilities for the first agent when learning in our set of benchmark
games with optional self-interested action communication.
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Figure 6.10: The action probabilities for the second agent when learning in our set of benchmark
games with optional self-interested action communication.
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Figure 6.11: The scalarised expected returns for both agents when learning in our set of bench-
mark games with optional cooperative policy communication.
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Figure 6.12: The action probabilities for the first agent when learning in our set of benchmark
games with optional cooperative policy communication.
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(a) Game 1
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(b) Game 2
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(c) Game 3
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(d) Game 4
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Figure 6.13: The action probabilities for the second agent when learning in our set of benchmark
games with optional cooperative policy communication.
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Figure 6.14: The empirical state distributions in the last 10% of episodes when learning in our
set of benchmark games with optional cooperative policy communication.
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