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Abstract
For effective decision support in scenarios with
conflicting objectives, sets of potentially optimal
solutions can be presented to the decision maker.
We explore both what policies these sets should
contain and how such sets can be computed ef-
ficiently. With this in mind, we take a distribu-
tional approach and introduce a novel dominance
criterion relating return distributions of policies di-
rectly. Based on this criterion, we present the distri-
butional undominated set and show that it contains
optimal policies otherwise ignored by the Pareto
front. In addition, we propose the convex distri-
butional undominated set and prove that it com-
prises all policies that maximise expected utility
for multivariate risk-averse decision makers. We
propose a novel algorithm to learn the distribu-
tional undominated set and further contribute prun-
ing operators to reduce the set to the convex dis-
tributional undominated set. Through experiments,
we demonstrate the feasibility and effectiveness of
these methods, making this a valuable new ap-
proach for decision support in real-world problems.

1 Introduction
Multi-objective sequential decision making is a complex pro-
cess that involves trade-offs between multiple, often conflict-
ing, objectives. As the preferences over these objectives are
typically not known a priori, it is challenging to find a sin-
gle optimal solution, and instead, a set of solutions that are
considered optimal can be presented to the decision maker
[Roijers et al., 2013]. To keep decision support tractable, it
is necessary to reduce the size of the solution sets as much as
possible. Therefore, defining appropriate solution sets that do
not retain excess policies while guaranteeing that no conces-
sions are made to optimality, as well as designing correspond-
ing pruning algorithms is essential [Taboada et al., 2007].

A solution set that is often considered appropriate in both
multi-objective decision making and multi-objective optimi-
sation is the Pareto front [Roijers et al., 2013]. The Pareto
front consists of the policies that lead to Pareto optimal ex-
pected payoffs and thus contains all policies which are op-
timal for decision makers interested in optimising the utility

from these expected returns [Hayes et al., 2022a]. However, it
is known that the Pareto front does not necessarily contain all
optimal policies for problems where the decision maker opti-
mises for their expected utility instead [Hayes et al., 2022c].

To address this limitation, we introduce a novel dominance
criterion, called distributional dominance, relating the multi-
variate return distribution between policies directly. Distribu-
tional dominance relies on first-order stochastic dominance,
which is known to imply greater expected utility for univari-
ate distributions [Fishburn, 1974; Bawa et al., 1985], and has
also been explored for multi-variate distributions [Denuit et
al., 2013; Levy, 2016a]. Based on distributional dominance,
we propose the distributional undominated set (DUS) as a
novel solution set and show that it contains all optimal poli-
cies for the class of multivariate risk-averse decision makers
defined by Richard [1975]. Furthermore, we show that it is a
superset of the Pareto front and as a result is a suitable starting
set which can be further pruned to smaller subsets for specific
scenarios.

While the DUS contains no distributionally dominated
policies, it may still contain policies which will never be cho-
sen in the expected utility setting. Therefore, we introduce
a second solution set, the convex distributional undominated
set (CDUS), which includes only those policies that are un-
dominated by a mixture of policies in the DUS. We find that
the CDUS is a subset of the DUS and contains all optimal
policies for multivariate risk-averse decision makers. While
in general the CDUS and the Pareto front do not coincide,
both sets are shown to include the convex hull.

From a computational perspective, we contribute algo-
rithms to prune a set of policies to its DUS or CDUS. As
these pruning methods rely on the quality of the input set,
we present an extension of the Pareto Q-learning algorithm
[Van Moffaert and Nowé, 2014] to learn return distributions
and only discard those policies that are not in the DUS. We
evaluate our approach on randomly generated MOMDPs of
different sizes and compare the sizes of the resulting sets af-
ter pruning. As our goal is to use these sets in a decision sup-
port scenario, keeping their sizes reasonable and algorithms
tractable both in terms of runtime and memory enables deci-
sion makers to efficiently select their preferred policy1.

1A full version with supplementary material is available online
at https://arxiv.org/abs/2305.05560
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2 Background
2.1 Multi-Objective Decision Making
Sequential decision making is often formalised using Markov
Decision Processes (MDPs) which provide a mathematical
framework for modelling settings in which an agent must
choose an action at each time step based on the current state
of the system. To address real-world situations where de-
cision makers must consider multiple conflicting objectives,
MDPs can be generalised to Multi-Objective Markov Deci-
sion Processes (MOMDPs) which allow for vectorial reward
functions [Roijers and Whiteson, 2017].
Definition 2.1. A multi-objective Markov decision process is
a tuple M = (S,A, T, γ,R), with d ≥ 1 objectives, where:

• S is the state space;
• A is the set of actions
• T : S ×A× S → [0, 1] is the transition function;
• γ ∈ [0, 1] is the discount factor;
• R : S ×A× S → Rd is the vectorial reward function.
In a MOMDP, a decision maker takes sequential actions by

means of policy π : S × A → [0, 1] which maps state-action
pairs to a probability. We denote the set of all policies by Π.

We take a distributional approach [Bellemare et al., 2023;
Hayes et al., 2022b] and consider the multivariate return dis-
tributions of these policies. The return Zπ = (Zπ

1 , . . . , Z
π
d )

T

is a random vector where each Zπ
i is the marginal distribution

of the i’th objective such that,

E [Zπ] = E

[ ∞∑
t=0

γtrt | π, µ0

]
= (E [Zπ

1 ] , . . . ,E [Zπ
d ])

T
.

(1)
For notational simplicity, when considering the expected re-
turns directly we will write this as Vπ = (V π

1 , . . . , V π
d )

T.

2.2 Dominance Relations
Multi-objective decision making presents additional com-
plexity compared to traditional decision making, as it is not
possible to completely order the return of different policies.
Pareto dominance introduces a partial ordering by consider-
ing a vector dominant when it is greater or equal for all ob-
jectives and strictly greater for at least one objective. We say
a policy Pareto dominates a second policy when the expected
value of its return distribution is Pareto dominant.
Definition 2.2. Let π, π′ ∈ Π. Then π Pareto dominates π′,
denoted by Vπ ≻p V

π’, when ∀i, V π
i ≥ V π′

i ∧∃i, V π
i > V π′

i .

When the expected return of π is equal to π′ or Pareto dom-
inates it, we denote this by Vπ ⪰p V

π’.
First-order stochastic dominance (FSD) is a well-known

dominance criterion from decision theory and economics,
which relates return distributions directly [Levy, 2016b; De-
nuit et al., 2013]. Let FX(x) = P (X⪯p x) be the cumulative
distribution function (CDF) of a random vector X, denoting
the probability that the random vector takes on a value Pareto
dominated or equal to x. Informally, we say that X FSD an-
other distribution Y when it always has a higher probability
of obtaining Pareto dominant returns.

Definition 2.3. A policy π first-order stochastically domi-
nates another policy π′, denoted by Zπ ⪰FSD Zπ’, when,

∀v ∈ Rd : FZπ (v) ≤ FZπ’(v).

2.3 The Utility-Based Approach
We take a utility-based approach to multi-objective decision
making [Roijers et al., 2013] and assume that for any decision
maker a utility function u : Rd → R exists that represents
their preferences over the objectives. We consider the class of
strictly monotonically increasing utility functions, denoted by
U . Intuitively, such utility functions imply that any decision
maker prefers more of each objective, given all else equal.
Definition 2.4. A function f : Rd → R is called strictly
monotonically increasing if,

∀x,y ∈ Rd : x≻p y =⇒ f(x) > f(y).

In the utility-based approach, there is often a need to op-
timise for an entire class of decision makers or a decision
maker for which we do not know the exact utility function. In
this case, it is necessary to identify a set of policies that con-
tain an optimal policy for all possible utility functions. A fur-
ther complication arises from the fact that different optimality
criteria exist depending on how the utility is derived [Roijers
et al., 2013]. For scenarios where a decision maker’s utility
is derived from multiple executions of a policy, the scalarised
expected returns (SER) criterion can be optimised,

V π
u = u

(
E

[ ∞∑
t=0

γtrt | π, µ0

])
. (2)

Alternatively, it is possible that the decision maker only ex-
ecutes their policy once and therefore aims to optimise their
expected utility. In the utility-based approach, this is known
as the expected scalarised returns (ESR) criterion,

V π
u = E

[
u

( ∞∑
t=0

γtrt

)
| π, µ0

]
. (3)

It is well-established that, in general, optimal policies under
one criterion need not be optimal under the other criterion
[Roijers et al., 2013; Vamplew et al., 2022].

2.4 Solution Sets
One of the most common solution sets in the literature is the
Pareto front (PF), formally defined in Definition 2.5 [Roijers
and Whiteson, 2017]. We stress that this solution set is pre-
sented in the context of the SER criterion as it is based on the
expected returns of the policies.
Definition 2.5. The Pareto front is the set of all policies that
are not Pareto dominated:

PF(Π) =
{
π ∈ Π | ∄π′ ∈ Π,Vπ’≻p V

π
}
. (4)

A second solution set that is often considered is the con-
vex hull (CH) which contains all policies that are optimal un-
der linear utility functions and is therefore applicable under
both SER and ESR [Hayes et al., 2022a]. Additionally, when
stochastic policies are allowed, the convex hull can be used to
construct all Pareto optimal policies [Vamplew et al., 2009].



Definition 2.6. The convex hull is the set of all policies that
are not Pareto dominated by a convex combination of other
policies,

CH(Π) =

π ∈ Π | ∄λ ∈ ∆|Π| :

|Π|∑
i=1

λiV
πi ≻p V

π

 . (5)

We note that solution sets based on return distributions
have also been considered, with for example the ESR set
[Hayes et al., 2022c]. In this work, we extend this line of re-
search and provide additional theoretical and computational
results.

3 Distributional Decision Making
While most of multi-objective decision making focuses on
returning the Pareto front, we demonstrate that this does not
cover the full range of optimal policies. Specifically, for de-
cision makers optimising their expected utility, the best pol-
icy in the Pareto front may still be significantly worse than
a Pareto dominated policy. To overcome this, we propose a
novel dominance criterion and subsequently construct a solu-
tion set based on this criterion.

3.1 Motivation
To understand why it is necessary to construct these novel
solution sets, and in particular why a distributional approach
is appropriate, it is helpful to consider a motivating example.
Example 1. Imagine a hospital patient needing to decide on a
treatment plan with their doctor. Their objectives are to max-
imise the efficacy of the treatment, denoted v1, while also
maximising their comfort (i.e. minimise the side-effects), de-
noted v2. Unfortunately, these objectives are conflicting. In
previous discussions with their doctor, the patient mentioned
that they wish to strike a balance between the two. A fit-
ting utility function is the product between the two objectives
(Eq. (6)) as it is maximised when values are closer together.

u(v1, v2) = v1 · v2 (6)
The doctor then proposes the following two treatment plans.

A =

{
P (v1 = 1, v2 = 0) =

1

2
, P (v1 = 0, v2 = 1) =

1

2

}
B = {P (v1 = 0.45, v2 = 0.45) = 1} ,

with E[A] = (0.5, 0.5) and E[B] = (0.45, 0.45).
When taking the standard approach and applying Pareto

dominance, it is clear that the expected return of A dominates
that of B. In contrast, when considering the distributions on
the basis of expected utility, A has an expected utility of 0,
while B has an expected utility of 0.2025. As the patient will
most likely follow the treatment plan only once, they aim to
optimise their expected utility and thus prefer distribution B.

As this example shows, it is pertinent to consider exactly
what the decision maker aims to optimise for: do they opti-
mise for repeated execution of the same policy, or maximis-
ing the expected utility from one execution? In the former
case, they may well decide based on the expected value of the
distribution. In the latter case, however, taking the full dis-
tribution of returns into account is key to effective decision
support.

3.2 Distributional Dominance
To address the limitations of Pareto dominance, we intro-
duce the distributional dominance criterion. This criterion
states that a distribution dominates another when it is first-
order stochastic dominant and at least one of the marginal
distributions strictly first-order stochastic dominates the re-
lated marginal distribution of the second distribution.
Definition 3.1. A policy π distributionally dominates another
policy π′, denoted by Zπ ≻d Z

π’, when,

Zπ ⪰FSD Zπ’ ∧∃i ∈ [d] : Zπ
i ≻FSD Zπ′

i .

One can verify that distributional dominance is equivalent
to strict first-order stochastic dominance in the case of ran-
dom vectors when all variables are independent. In gen-
eral, however, distributional dominance is a stronger condi-
tion than strict first-order stochastic dominance as the con-
dition on the marginal distributions implies strict FSD but is
not implied by it. Defining distributional dominance as such
enables us to guarantee a strictly greater expected utility for a
large class of decision makers and leads to the general solu-
tion set discussed in Section 4.

For the class of decision makers with utility functions in U ,
we show that when a given random vector has strictly greater
expected utility for all utility functions than a second random
vector, this implies distributional dominance.
Theorem 3.1. Let X and Y be d-dimensional random vec-
tors. Then,

∀u ∈ U : Eu(X) > Eu(Y) =⇒ X≻d Y.

Proof sketch. We first show an additional lemma stating
that the condition implies first-order stochastic dominance.
Therefore, the proof reduces to showing the condition on the
marginals. It suffices to show that if X does not distribution-
ally dominate Y, it is always possible to construct a utility
function for which Eu(Y) is at least as high as Eu(X).

In practice, it is impossible to verify whether the expected
utility of a given random vector is always strictly greater than
that of a second random vector. On the other hand, we will
demonstrate that it is computationally feasible to verify dis-
tributional dominance (see Section 4.2). We now show that
distributional dominance implies a strictly greater expected
utility for a subset of utility functions in U . The condition we
impose is referred to as “multivariate risk-aversion”, which
means that a decision maker in this class will, when con-
fronted with a choice between two lotteries, always avoid
the lottery containing the worst possible outcome [Richard,
1975]. Below, we present the theorem and proof for bivari-
ate distributions. We note that for FSD this property has
been shown to hold for n-dimensional random vectors as well
[Scarsini, 1988].
Theorem 3.2. Let X and Y be two-dimensional random vec-
tors. Then ∀u ∈ U with ∂2u(x1,x2)

∂x1∂x2
≤ 0,

X≻d Y =⇒ Eu(X) > Eu(Y).

Proof sketch. The proof utilises the fact that first-order
stochastic dominance implies greater or equal expected util-
ity [Hayes et al., 2022c]. We subsequently show that the ad-
ditional condition on the marginal distributions for distribu-
tional dominance implies strictly greater expected utility.



4 A General Solution Set
We adopt distributional dominance to define the distributional
undominated set (DUS). The DUS has two important desider-
ata: it contains the Pareto front, i.e. the optimal set under SER
and contains all optimal policies for multivariate risk-averse
decision makers under ESR. The deferred proofs for the the-
oretical results can be found in the supplementary material.

4.1 Distributional Undominated Set
As the name suggests, the distributional undominated set con-
tains only those policies which are not pairwise distribution-
ally dominated. We define this formally in Definition 4.1.
Definition 4.1. The distributional undominated set is the set
of all policies that are not distributionally dominated:

DUS(Π) =
{
π ∈ Π | ∄π′ ∈ Π,Zπ’≻d Z

π
}
. (7)

From this definition it is clear that all policies which are
optimal for multivariate risk-averse decision makers are in the
set. To show that the Pareto front is a subset as well, we first
introduce Lemma 4.1, stating that distributional dominance
implies Pareto dominance.
Lemma 4.1. For all policies π, π′ ∈ Π,

Zπ ≻d Z
π’ =⇒ Vπ ≻p V

π’ .

Proof sketch. The proof works by utilising a known link be-
tween the expected value of a random variable and its cumula-
tive density function. Then, the conditions for distributional
dominance imply that the expected value for each marginal
distribution is greater or equal and at least one marginal dis-
tribution is strictly greater.

Leveraging Lemma 4.1, it is a straightforward corollary
that the Pareto front is a subset of the DUS.
Corollary 4.1.1. For any family of policies Π, the Pareto
front is a subset of the distributional undominated set, i.e.,

PF(Π) ⊆ DUS(Π) .

We highlight that our dominance results and solution sets
are not restricted to MOMDPs but apply to any stochas-
tic multi-objective decision problem with vector-valued out-
comes.

4.2 Computing the DUS
To deal with return distributions computationally, we project
distributions to multivariate categorical distributions [Belle-
mare et al., 2023; Hayes et al., 2022c]. This ensures that
finite memory is used, and, importantly, that computations
can be performed efficiently. Concretely, to verify first-order
stochastic dominance, we need only compare a finite number
of points as the CDF is a multivariate step function with steps
at v1,v2, . . . ,vn. Formally, for the categorical distribution
X the cumulative distribution at x is computed as follows,

FX(x) =
∑

vi ⪯p x

p(vi). (8)

Additionally, discrete distributions enable straightforward
computation of marginal distributions, thus having all ingre-
dients to check distributional dominance (see Definition 3.1).

Then, starting from a given set of policies, the DUS can
be computed using a modified version of the Pareto Prune
(PPrune) algorithm [Roijers and Whiteson, 2017] that checks
for distributional dominance rather than Pareto dominance.
We refer to the resulting pruning algorithm as DPrune.

5 A Solution Set for ESR
As the DUS is a superset of the Pareto front and further con-
tains optimal policies under ESR, we can intuitively assume
that it might grow very large in size, thereby complicating
its practical use in decision support systems. When consid-
ering SER, it is possible to reduce the set to the Pareto front
by utilising existing pruning operators [Roijers and Whiteson,
2017]. We contribute a similar approach for ESR and present
both the resulting solution set as well as a pruning algorithm
for this purpose.

5.1 Convex Mixture of Distributions
For univariate distributions, it has been shown that a mix-
ture distribution can be constructed that first-order stochas-
tic dominates another distribution if and only if for any de-
cision maker there exists a distribution in the mixture which
is preferred over the dominated distribution [Fishburn, 1974;
Bawa et al., 1985]. Mixture dominance has also been consid-
ered for multivariate distributions [Denuit et al., 2013].

Here, we show that convex distributional dominance im-
plies greater expected utility for multivariate risk-averse de-
cision makers when considering bivariate distributions.
Theorem 5.1. Let {X1, . . . ,Xn} and {Y1, . . . ,Yn} be sets
of two-dimensional random vectors. Then,

∃λ ∈ ∆n :

n∑
i=1

λiXi≻d

n∑
i=1

λiYi,

implies that ∀u ∈ U with ∂2u(x1,x2)
∂x1∂x2

≤ 0,

∃i ∈ [n] : Eu(Xi) > Eu(Yi).

Proof sketch. The proof follows from Theorem 3.2 and lin-
earity of expectation.

Observe that in the special case where all random vectors
Yi are equal, mixture dominance of Y implies that all deci-
sion makers will prefer a random vector Xi over Y.

5.2 Convex Distributional Undominated Set
We define a final solution set, called the convex distributional
undominated set (CDUS), that contains only those policies
which are undominated by a mixture of distributions. The-
orem 5.1 guarantees that for all decision makers in the class
there is an optimal policy contained in the set. We define the
CDUS formally below. It follows from this definition that the
CDUS is a subset of the DUS.
Definition 5.1. The CDUS is the set of all policies that are
not distributionally dominated by a convex mixture:

CDUS(Π) =

π ∈ Π | ∄λ ∈ ∆|Π| :

|Π|∑
i=1

λiZ
πi ≻d Z

π

 .



 CDUS

 PF

CH  DUS

ESR

SER

Linear utility

Linear utility

Figure 1: A taxonomy of solution sets in multi-objective decision
making.

Given the myriad of solution sets in multi-objective deci-
sion making, it is useful to define a complete taxonomy be-
tween them. From Corollary 4.1.1, we know that the Pareto
front is a subset of the DUS. Additionally, it follows from
Definition 5.1 that the CDUS is also a subset of the DUS.
Earlier work has shown that the convex hull is a subset of the
Pareto front [Roijers and Whiteson, 2017] and we show that
this is also true for the CDUS.

Corollary 5.1.1. For any family of policies Π,

CH(Π) ⊆ CDUS(Π) .

The final missing piece of the puzzle is the relation be-
tween the CDUS and Pareto front. However, here one can
find counterexamples which disprove that the CDUS is either
a subset or superset of the Pareto front. The landscape of so-
lution sets for multi-objective decision making can then be
summarised as shown in Fig. 1.

5.3 Pruning to the CDUS
To prune a set of distributions to its CDUS, we must check
for each distribution whether it is dominated by a mixture of
the other distributions. Fortunately, this verification is feasi-
ble by restating the problem using linear programming. Con-
cretely, we extend an algorithm that checks whether a univari-
ate distribution is convex first-order stochastic dominated to
our setting [Bawa et al., 1985]. We show the resulting linear
program CDPrune in Algorithm 1.

For notational simplicity, we define the size of the set of
distributions allowed in the mixture as n. Then the linear pro-
gram takes in total n+1 distributions as input, where the final
distribution is the distribution to check. As these distributions
are discrete, the CDFs are multivariate step functions that step
at a finite number of points. Let Di be the set of points at
which the CDF of distribution i steps. Then D =

⋃n+1
i=1 Di is

the union of all such points. We denote h = |D|.
The linear program maximises δ, which is the sum of slack

variables that make up the difference between the CDFs of
the marginal mixture distributions and the marginals of the
distribution to check (Eq. (9)). If this procedure leads to a δ
greater than zero, this implies that the conditions for distribu-
tional dominance are met and the distribution is dominated by
the mixture. Note that we may omit an additional constraint
on the l slack variables to be greater or equal to zero, as this is
implied by the constraint on the s slack variables (Eq. (12)).

When no exact formulation of the joint CDFs is available,
we propose an alternative linear program that operates solely

Algorithm 1 CDPrune

Input: A set of return distributions Z allowed in the mixture
and a return distribution Z to check

Output: Whether the distribution is convex dominated

Maximise δ =

n∑
i=1

d∑
k=1

li,k (9)

Subject to:
n∑

i=1

λiFZi(vj) + sj = FZ(vj) j = 1, . . . , h (10)

n∑
i=1

λiFZi,k
(vj,k) + lj,k = FZk

(vj,k)

j = 1, . . . , h k = 1, . . . , d (11)
n∑

i=1

λi = 1

λi ≥ 0 i = 1, . . . , n

sj ≥ 0 j = 1, . . . , h where sj is a slack variable
(12)

return TRUE if δ > 0 else FALSE

on the marginal distributions. In this case, it is necessary to
change the first constraint in Eq. (10) to

n∑
i=1

λi

d∏
k=1

FZi,k
(vj,k) + sj =

d∏
k=1

FZk
(vj,k), (13)

while the second constraint in Eq. (11) is removed altogether.
By maximising the sum of s slack variables, the resulting lin-
ear program essentially checks for strict first-order stochastic
dominance between random vectors with independent vari-
ables. One can verify that this implies distributional domi-
nance for independent variables and otherwise may serve as
an approximation.

6 Computing the Solution Sets
Our final contribution relates theory to practice by de-
signing an algorithm able to learn the DUS in a given
MOMDP. We evaluate this algorithm on different sizes of
MOMDPs and compare the resulting sizes of the sets when
pruned down to the subsets covered in the taxonomy in
Fig. 1. All code is available at https://github.com/wilrop/
distributional-dominance.

6.1 Distributional Multi-Objective Q-Learning
Pareto Q-learning (PQL) is a classical algorithm used in
multi-objective reinforcement learning to learn the Pareto
front [Van Moffaert and Nowé, 2014]. We find that the
general framework of PQL lends itself nicely to learning
the DUS. Our algorithm, DIstributional Multi-Objective Q-
learning (DIMOQ) is shown in Algorithm 2.

https://github.com/wilrop/distributional-dominance
https://github.com/wilrop/distributional-dominance


Algorithm 2 DIMOQ

Input: The state space S , actions space A and discount fac-
tor γ

Output: The DUS
1: Initialise all Q(s, a) as empty sets
2: Initialise all R(s, a, s′) as Dirac delta distributions
3: Estimate T : S ×A× S → [0, 1] from random walks
4: for each episode do
5: Initialise state s
6: repeat
7: Take an action a ∼ π(a|s)
8: Observe the next state s′ ∈ S and reward r ∈ Rd

9: ND(s, a, s′)← DPRUNE
(⋃

a′∈A Q(s′, a′)
)

10: Update the reward distribution R(s, a, s′) with r
11: s← s′

12: until s is terminal
13: end for
14: return DPRUNE

(⋃
a∈A Q (0, a)

)
The algorithm first initialises the Q-sets containing undom-

inated distributions to empty sets and reward distributions to
Dirac delta distributions at zero. During training, the agent
follows an ϵ-greedy policy and learns the immediate reward
distributions R(s, a, s′) separate from the expected future re-
ward distributions ND(s, a, s′). Learning the immediate re-
ward distribution is done by recording the empirical distri-
bution, while learning the future reward distribution is done
using a modified version of the Q-update rule employed for
PQL (see Eq. (14)). Note, however, that for DIMOQ the prun-
ing operator for the distributions in the next state is DPrune
rather than PPrune.

Dealing With Stochasticity
The Q-learning update in PQL is described for determinis-
tic environments. As we deal with fundamentally stochas-
tic environments, we propose an alternative formulation in
Eq. (14).

Q(s, a)←
⊕
s′

T (s′|s, a) [R(s, a, s′) + γND(s, a, s′)]

(14)
First, the term [R(s, a, s′) + γND(s, a, s′)] constructs a

set of expected return distributions when the state-action pair
leads to s′. Next, the

⊕
s′ T (s

′|s, a) constructs mixture poli-
cies over all next states s′ where each distribution is weighted
according to its transition probability T (s′|s, a).

In a learning setting, the transition probabilities are not as-
sumed to be given. As such, we perform a number of random
walks before training to estimate these probabilities. During
learning, we do not update the transition function anymore,
to avoid creating unnecessary distributions which will never
be observed again due to drift in the probabilities.

Action Selection
The second adaptation necessary to learn the DUS rather than
the Pareto front is the action scoring and selection mecha-
nism. Even for PQL, this is complicated as it is not obvi-
ous what metric to use to determine the quality of a set of

Name States Actions Next states Timesteps Set limit
Small 5 2 [1, 2] 3 10

Medium 10 3 [1, 2] 5 15
Large 15 4 [1, 2] 7 20

Table 1: Configuration of the generated MOMDPs. Timesteps refer
to the maximum time horizon after which the episode is terminated.

Q-values. Several set evaluation mechanisms have been pro-
posed for this, such as for example the hypervolume metric
[Guerreiro et al., 2021] or using a Chebyshev scalarisation
function [Van Moffaert et al., 2013]. We note that these ap-
proaches can be extended to DIMOQ as well by computing
the expected value of the distribution first and then continuing
with one of the aforementioned scoring metrics.

In addition to the classical scoring methods, we propose us-
ing a linear utility function as a baseline and scoring a set of
distributions by its mean expected utility. As linear scalarisa-
tion can be done efficiently, this results in a performant scor-
ing method. An additional advantage of this approach is that
when more information about the shape of the utility function
is known, the linear utility baseline can be substituted with a
better approximation.

Limiting Set Size
Due to stochasticity in the environment and because the Q-
update rule in Eq. (14) performs all possible combinations,
the Q-sets in the algorithm are quick to explode in size. To
constrain the size of the sets, we propose two mechanisms.

First, we limit the precision of the distributions that are
learned. This approach was demonstrated to be successful in
multi-objective dynamic programming as well [Mandow et
al., 2022]. Second, we set a fixed limit on the set size. When-
ever this limit is crossed, we perform agglomerative cluster-
ing where the number of clusters equals the maximum set
size. As input for the clustering, we compute the pairwise
distances between all distributions. In experiments, we com-
pute the Jensen-Shannon distance between the flattened dis-
tributions. Alternatively, one could use the cost of optimal
transport between pairs of distributions.

6.2 Empirical Results
We evaluate DIMOQ (Algorithm 2) and CDPrune (Algo-
rithm 1) on randomly generated MOMDPs of different sizes
shown in Table 1. For each size category, we repeat the ex-
periment with seeds one through five and perform 50, 000
random walks to estimate T followed by 2, 000 training
episodes. All experiments considered two objectives, used
a discount factor of 1 and limited the precision of distribu-
tions to three decimals. Finally, the experiments were run on
a single core of an Intel Xeon Gold 6148 processor, with a
maximum RAM requirement of 2GB.

We observe that the runtimes for DIMOQ shown in Ta-
ble 2 are heavily influenced by the size of the MOMDP. Ad-
ditionally, there is a large variance in runtime across differ-
ent seeds. We find that these differences cannot solely be at-
tributed to having a more complex transition function, but are
most likely due to the interplay between the transition func-
tion and the reward function. Specifically, if transitions result



Name Mean SD Min Max
Small 00:01:21 00:00:25 00:00:58 00:02:01

Medium 01:49:11 00:47:07 00:17:41 02:31:18
Large 17:01:25 06:02:35 09:46:06 27:55:55

Table 2: Runtime for DIMOQ on randomly generated MOMDPs.

Name DUS CDUS PF CH
Small 13.0± 10.73 95.71%± 8.57 39.88%± 16.45 36.07%± 20.12

Medium 372.2± 211.88 61.27%± 12.16 6.28%± 6.70 2.87%± 3.48
Large 639.0± 221.71 53.00%± 5.68 3.43%± 2.01 1.33%± 0.82

Table 3: The relative sizes of the pruned subsets.

in a large number of undominated returns each iteration needs
to perform a large number of combinations. It is clear how-
ever that scaling becomes an issue for DIMOQ when going to
larger action and state spaces. As such, we plan to investigate
the use of function approximation to further extend DIMOQ
to larger MOMDPs. Additionally, we note that MOMDPs
modelled after real-world scenarios will likely contain more
structure and are thus interesting to study for future work.

In Table 3 we show the average size of the DUS, as well
as what percentage of the DUS belongs to the CDUS, Pareto
front and convex hull on average. We observe a similar pat-
tern, namely that larger MOMDPs lead to larger solution sets.
Interestingly though, larger MOMDPs also allow for a greater
percentage of policies to be pruned for the smaller solution
sets, which is beneficial for their use in decision support.

We highlight that although the CDUS is often substantially
smaller than the DUS, the Pareto front and convex hull are
much smaller than either. Intuitively, this is because when
both objectives are to be maximised, Pareto optimal policies
can only occur on the upper right hand region of the objective
space, while policies in the DUS and CDUS may still exist
in the Pareto dominated part of the space. However, recall
from Example 1 that these policies may still be optimal under
ESR. We visualise this in Fig. 2 where the expected values
for the final distributions from one representative experiment
are plotted.

Finally, we remark that while the CDUS cannot be guar-
anteed to be a superset of the Pareto front in general, in all
experiments this was in fact the case. This is also apparent
from the results in Fig. 2. An interesting direction for future
work is to specify the exact conditions under which this rela-
tion is guaranteed to hold.

7 Related Work
Stochastic dominance has long been employed in areas of
finance and economics [Levy, 2016b] and has more re-
cently also found use in solving decision making problems
through reinforcement learning (RL). In single-objective set-
tings, Epshteyn and DeJong [2006] employ stochastic dom-
inance to learn optimal policies in MDPs with incomplete
specifications. Martin et al. [2020] define a risk-aware dis-
tributional algorithm that utilises stochastic dominance at de-
cision time to determine the best action. Techniques from
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Figure 2: The resulting solution sets for a sample experiment. Poli-
cies in the dominated part of the objective space may still be optimal
for certain decision makers and can thus not be excluded a priori.

stochastic dominance have also been used to analyse the theo-
retical properties of distributional RL [Rowland et al., 2018].

The distributional approach in general has become an ac-
tive area of research for both single-objective and multi-
objective settings. For a thorough overview of techniques in
single-objective settings, we refer to a recent textbook on the
matter [Bellemare et al., 2023]. In multi-objective settings,
Hayes et al. [2021] and Reymond et al. [2023] define single-
policy multi-objective RL algorithms that can learn policies
for nonlinear utility functions under the ESR criterion. Fur-
thermore, Hayes et al. [2022b] outline a multi-policy multi-
objective distributional value iteration algorithm that com-
putes a set of policies for the ESR criterion, known as the
ESR set. The ESR set is the first solution set for use in multi-
objective sequential decision making under the ESR criterion
and leverages strict first-order stochastic dominance to deter-
mine whether a policy is included in the set. This set was
shown to contain all optimal policies for multivariate risk-
averse decision makers, but implicitly assumes all variables
in the random vector to be independent [Hayes et al., 2022c].

8 Conclusion
We investigate multi-objective decision making and find that
existing solution sets frequently fall short in specific use
cases. To resolve this, we first propose the distributional
undominated set. We show that this set contains both the
Pareto front as well as all optimal policies for multivariate
risk-averse decision makers optimising their expected utility.
We subsequently present the convex distributional undomi-
nated set, which aims to target the expected utility setting in
particular. From this, we determine a taxonomy of existing
solution sets in multi-objective decision making.

To facilitate the application of these concepts, we present
computational approaches for learning the distributional un-
dominated set and pruning operators to reduce the set to
the convex distributional undominated set. Through exper-
iments, we demonstrate the feasibility and effectiveness of
these methods. As such, this work offers a promising ap-
proach to decision support in real-world problems.
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A Proofs of Theoretical Results
In this section, we present the deferred proofs from the main
text.

A.1 Distributional Dominance
We introduce several theoretical results concerning distribu-
tional dominance. In particular, we show that a greater ex-
pected utility for all strictly increasing utility functions im-
plies distributional dominance. To prove this, we present two
necessary lemmas. First, Lemma A.1 is a straightforward
generalisation to an earlier result by Fishburn [1974].

Lemma A.1. Let X and Y be d-dimensional random vectors.
Then,

∀u ∈ U : Eu(X) ≥ Eu(Y) =⇒ X⪰FSD Y.

Proof. We show this by contradiction. Let v ∈ Rd such that
FX(v) > FY(v). Define u to be a smooth approximation to
the multivariate step function with u(z) = 0 when z ⪯p v
and 1 otherwise. It is clear that u ∈ U . Then,

Eu(X)− Eu(Y) = (1− FX(v))− (1− FY(v)) (15)
= FY(v)− FX(v) (16)
< 0.

The second lemma relates first-order stochastic dominance
on the joint distribution to the same restriction on all of the
marginal distributions.

Lemma A.2. Let X and Y be d-dimensional random vectors.
Then,

X⪰FSD Y =⇒ ∀i ∈ [d] : Xi⪰FSD Yi.

Proof. First, note that for any random vector X,

FXi(x) = lim
x−i→∞

FX−i,Xi(x−i, xi). (17)

Thus, when X⪰FSD Y, then ∀v ∈ Rd:

=⇒ FX(v) ≤ FY(v) (18)
=⇒ lim

v−i→∞
FX−i,Xi(v−i, vi) (19)

≤ lim
v−i→∞

FY−i,Yi
(v−i, vi) (20)

=⇒ ∀i ∈ [d] : FXi
(vi) ≤ FYi

(vi) (21)
=⇒ ∀i ∈ [d] : Xi⪰FSD Yi.

Using Lemmas A.1 and A.2 we can show the required re-
sult. We repeat Theorem 3.1 first and present the proof im-
mediately after.

Theorem 3.1. Let X and Y be d-dimensional random vec-
tors. Then,

∀u ∈ U : Eu(X) > Eu(Y) =⇒ X≻d Y.

Proof. We know from Lemma A.1 that,

∀u ∈ U : Eu(X) > Eu(Y) =⇒ X⪰FSD Y. (22)

Therefore, we need only show that ∃i ∈ [d] : Xi≻FSD Yi.

We define a utility function u that is a sum of univariate
strictly monotonically increasing utility functions where each
term only takes one variable from the vector into account, i.e.,

u(x) = u1(x1) + · · ·+ ud(xd). (23)
Then,

Eu(X) > Eu(Y) (24)

=⇒
∫
X

u(x)fX(x)dx >

∫
Y

u(y)fY(y)dy (25)

=⇒
d∑

i=1

∫ +∞

−∞

∫
X−i

ui(xi)fX(x−i, xi)dx−idxi (26)

>

d∑
i=1

∫ +∞

−∞

∫
Y−i

ui(yi)fY(y−i, yi)dy−idyi (27)

=⇒
d∑

i=1

∫ +∞

−∞
ui(xi)

∫
X−i

fX(x−i, xi)dx−idxi (28)

>

d∑
i=1

∫ +∞

−∞
ui(yi)

∫
Y−i

fY(y−i, yi)dy−idyi (29)

=⇒
d∑

i=1

∫ +∞

−∞
ui(xi)fXi

(xi)dxi (30)

>

d∑
i=1

∫ +∞

−∞
ui(yi)fYi(yi)dyi (31)

Observe that Lemma A.2 guarantees that,
X⪰FSD Y =⇒ ∀i ∈ [d] : Xi⪰FSD Yi. (32)

As such, the final implication is only true when ∃i ∈ [d] :
Xi≻FSD Yi.

The second deferred proof from Section 3 showed that dis-
tributional dominance implies strictly greater expected utility
for the class of multivariate risk-averse decision makers.
Theorem 3.2. Let X and Y be two-dimensional random vec-
tors. Then ∀u ∈ U with ∂2u(x1,x2)

∂x1∂x2
≤ 0,

X≻d Y =⇒ Eu(X) > Eu(Y).

Proof. By definition, X≻d Y =⇒ X⪰FSD Y. For this
condition, Hayes et al. [2022c] show that,

Eu(X)− Eu(Y) ≥ −
∫ +∞

−∞
lim

t→+∞

∂u(t, z)

∂z
∆F (t, z)dz.

(33)
Where ∆F (t, z) = FX(t, z) − FY(t, z). Without loss of
generality, let us assume that X2≻FSD Y2, i.e. ∃z ∈ R :
FX2(z) < FY2(z). Then,

Eu(X)− Eu(Y) (34)

≥ −
∫ +∞

−∞
lim

t→+∞

∂u(t, z)

∂z
∆F (t, z)dz (35)

= −
∫ +∞

−∞

(
lim

t→+∞

∂u(t, z)

∂z

)
∆F2

(z)dz (36)

> 0.



A.2 Distributional Undominated Set
Based on the distributional dominance criterion, we define
the Distributional Undominated Set (DUS) in Definition 4.1.
To show that this set is a superset of the Pareto front, we re-
state Lemma 4.1 below and subsequently present the missing
proof.

Lemma 4.1. For all policies π, π′ ∈ Π,

Zπ ≻d Z
π’ =⇒ Vπ ≻p V

π’ .

Proof. Let Zπ and Zπ’ be two return distributions and let
Zπ ≻d Z

π’. We can expand the terms as follows,

Zπ =


Zπ
1

...
Zπ
d

 and Zπ’ =


Zπ′

1

...

Zπ′

d

 , (37)

with d the number of objectives. We know that because
Zπ ≻d Z

π’,

∀i ∈ [d] : Zπ
i ⪰FSD Zπ′

i ∧ ∃i ∈ [d] : Zπ
i ≻FSD Zπ′

i . (38)

The following can then be shown to hold [Hayes et al.,
2022c]:

∀i ∈ [d] : Zπ
i ⪰FSD Zπ′

i =⇒ ∀i : E[Zπ
i ] ≥ E[Zπ′

i ]. (39)

This ensures that Vπ ⪰p V
π’. Let us denote the i for which

strict first-order stochastic dominance holds as j. For strict
Pareto dominance, observe that

E
[
Zπ
j

]
=

∫ +∞

0

(1− FZπ
j
(v))dv (40)

E
[
Zπ′

j

]
=

∫ +∞

0

(1− FZπ′
j
(v))dv. (41)

As FZπ
j
(v) ≤ FZπ′

j
(v) for all v and strictly less for some v,

we can say that,∫ +∞

0

(1− FZπ
j
(v))dv >

∫ +∞

0

(1− FZπ′
j
(v))dv (42)

=⇒ E
[
Zπ
j

]
> E

[
Zπ′

j

]
.

It is then a simple corollary that the Pareto front is a subset
of the DUS.

Corollary 4.1.1. For any family of policies Π the Pareto front
is a subset of the distributional dominance set, i.e.,

PF(Π) ⊆ DUS(Π) .

Proof. Assume that there exists a π ∈ PF(Π) such that π /∈
DUS(Π). As π /∈ DUS(Π), we know that,

∃π′ ∈ Π,Zπ’≻d Z
π . (43)

Lemma 4.1 implies then that Vπ’≻p V
π . As π is Pareto dom-

inated by π′, π /∈ PF(Π), leading to a contradiction.

A.3 Convex Distributional Undominated Set
Our final theoretical contributions introduce the Convex Dis-
tributional Undominated Set (CDUS). We first extend a well-
known result from univariate first-order stochastic dominance
to our setting [Fishburn, 1974].
Theorem 5.1. Let {X1, . . . ,Xn} and {Y1, . . . ,Yn} be sets
of two-dimensional random vectors. Then,

∃λ ∈ ∆n :

n∑
i=1

λiXi≻d

n∑
i=1

λiYi,

implies that ∀u ∈ U with ∂2u(x1,x2)
∂x1∂x2

≤ 0,

∃i ∈ [n] : Eu(Xi) > Eu(Yi).

Proof. Assume that given {λ1, . . . , λn}, the condition holds
for {X1, . . . ,Xn} and {Y1, . . . ,Yn}. By Theorem 3.2 and
linearity of expectation, we can state that ∀u ∈ U with
∂2u(x1,x2)
∂x1∂x2

≤ 0,

Eu

(
n∑

i=1

λiXi

)
> Eu

(
n∑

i=1

λiYi

)
(44)

=⇒
n∑

i=1

λi Eu (Xi) >

n∑
i=1

λi Eu (Yi) (45)

=⇒ ∃i ∈ [n] : Eu(Xi) > Eu(Yi).

Finally, we show the simple corollary that the convex hull
is a subset of the convex distributional undominated set.
Corollary 5.1.1. For any family of policies Π,

CH(Π) ⊆ CDUS(Π) .

Proof. Assume that there exists a policy π which is in the
convex hull but not in the convex distributional dominance
set. This implies there exists a set of weights over policies in
the CDUS which dominates π. Then,

|Π|∑
i=1

λiZ
πi ≻d Z

π (46)

=⇒ E

 |Π|∑
i=1

λiZ
πi

≻p E [Zπ] (47)

=⇒
|Π|∑
i=1

λi E [Zπi ]≻p E [Zπ] (48)

=⇒
|Π|∑
i=1

λiV
πi ≻p V

π . (49)

As such, π would also not be in the convex hull. This leads
to a contradiction, thus concluding the proof.

B Additional Results
Throughout this work, we intended to prove results that were
as general as possible. In many cases, however, it was nec-
essary to introduce strong conditions to arrive at a result. In



this section, we present simple propositions that demonstrate
why weaker conditions may fail. To the best of our knowl-
edge, these results have not been published previously and we
hope that future researchers can use them to avoid exploring
impossible results.

B.1 First-Order Stochastic Dominance
First, we show that strict first-order stochastic dominance
does not guarantee that one of the marginals strictly first-
order stochastic dominates their related marginal. This moti-
vates the need to define distributional dominance as a separate
dominance criterion for multivariate distributions.

Proposition B.0.1. Let X and Y be d-dimensional random
vectors. Then,

X≻FSD Y ≠⇒ ∃i ∈ [d] : Xi≻FSD Yi.

Proof. Consider the following distributions,

X =

{
P (2, 4) =

2

3
, P (4, 2) =

1

3

}
Y =

{
P (2, 2) =

1

3
, P (2, 4) =

1

3
, P (4, 4) =

1

3

}
.

(50)

Then, X≻FSD Y. However, when looking at the marginal
CDFs we see the following:

FX1
(2) = FY1

(2) =
2

3
FX1

(4) = FY1
(4) = 1. (51)

FX2(2) = FY2(2) =
1

3
FX2(4) = FY2(4) = 1. (52)

And thus FX1 = FY1 and FX2 = FY2 . As such, ∄i ∈ [d] :
Xi≻FSD Yi.

Next, we show that contrary to univariate distributions,
first-order stochastic dominance does not guarantee a greater
or equal utility for all (strictly) increasing utility functions.

Proposition B.0.2. Let X and Y be d-dimensional random
vectors. Then,

X⪰FSD Y ≠⇒ ∀u ∈ U : Eu(X) ≥ Eu(Y).

Proof. Recall the same distributions as shown in Eq. (50).
Let u(v1, v2) = ln (e0 + ev1) · ln (e0 + ev2) which is an el-
ement of U and a smooth and strictly increasing approxima-
tion of max(0, v1) ·max(0, v2). Then Eu(X) ≈ 8.55, while
Eu(Y) ≈ 9.74.

Note that the same proof can be used to show that
X≻FSD Y does not imply a strictly greater expected utility.
In fact, the stronger claim of multivariate risk aversion is not
enough either as is demonstrated in the following proposition.

Proposition B.0.3. Let X and Y be two-dimensional random
vectors. Then X≻FSD Y does not imply in general that ∀u ∈
U with ∂2u(x1,x2)

∂x1∂x2
≤ 0 : Eu(X) > Eu(Y).

Proof. Recall the same distributions as shown in Eq. (50).
Let u(v1, v2) = v1 + v2 and note that u ∈ U and that
∂2u(x1,x2)
∂x1∂x2

= 0. Then Eu(X) = 6 and Eu(Y) = 6.

Finally, we show that strict first-order stochastic domi-
nance and distributional dominance are equivalent in the case
of random vectors with independent random variables.
Proposition B.0.4. Let X and Y be d-dimensional random
vectors such that P (X1 = x1, . . . , Xd = xd) = P (X1 =
x1) · · ·P (Xd = xd) and P (Y1 = y1, . . . , Yd = yd) =
P (Y1 = y1) · · ·P (Yd = yd). Then,

X≻d Y ⇐⇒ X≻FSD Y.

Proof. ( =⇒ ) First, by definition X≻d Y =⇒ X⪰FSD Y
and ∃i ∈ [d] : Xi≻FSD Yi. Assume that there does not exist
a v such that FX(v) < FY(v). Then ∀v ∈ Rd : FX(v) =
FY(v). By our assumption,

∀vi ∈ R : lim
v−i→∞

FX−i,Xi(v−i, vi)

= lim
v−i→∞

FY−i,Yi
(v−i, vi),

(53)

leading to a contradiction. It is interesting to note that the im-
plication does not require the random variables in the vectors
to be independent.
( ⇐= ) Finally, the assumption that all marginals

are independent allows us to state that ∀v ∈ Rd :
FX1

(v1) · · ·FXd
(vd) ≤ FY1

(v1) · · ·FYd
(vd) and that ∃v ∈

Rd : FX1
(v1) · · ·FXd

(vd) < FY1
(v1) · · ·FYd

(vd). As such,
it is necessary that ∃i ∈ [d] : Xi≻FSD Yi.

B.2 Relation Between Solution Sets
In Section 4 we define a taxonomy between the relevant so-
lution sets in multi-objective decision making. We noted that
in general, the Pareto front is neither a subset nor a super-
set of the convex distributional undominated set. Here, we
demonstrate examples of this fact.
Proposition B.0.5. For any family of policies Π, it is not true
in general that

PF(Π) ⊆ CDUS(Π) .

Proof. Define the following return distributions:

Zπ1 = {P (1, 5) = 1}
Zπ2 = {P (5, 1) = 1}

Zπ3 =

{
P (1, 3) =

1

2
, P (3, 1) =

1

2

}
.

(54)

Then the expected value of these distributions is as follows:

Vπ1 = (1, 5)

Vπ2 = (5, 1)

Vπ3 = (2, 2).

(55)

Then π1, π2, π3 ∈ PF(Π). Observe, that

1

2
Zπ1 +

1

2
Zπ2 ≻d Z

π3 , (56)

and therefore π3 /∈ CDUS(Π).



Proposition B.0.6. For any family of policies Π, it is not true
in general that

CDUS(Π) ⊆ PF(Π) .

Proof. Define the following return distributions:

Zπ1 = {P (2, 5) = 1}

Zπ2 =

{
P (1, 5) =

1

2
, P (3, 3) =

1

2

}
.

(57)

Then the expected value of these distributions is as follows:

Vπ1 = (2, 5)

Vπ2 = (2, 4)
(58)

and PF(Π) = {π1} while CDUS(Π) = {π1, π2}.

C A Case Study
We provide a brief case study to highlight the value of having
the additional policies in the distributional undominated set
compared to the Pareto front. For this purpose, we define two
utility functions in that may be used by real-world decision
makers.

The first utility function, shown in Eq. (59), is the product
between the two objectives and is also used in Example 1.
Intuitively, a decision maker with this function aims to strike
a balance between both objectives to maximise their utility.
We call the decision maker with this utility function Decision
Maker 1 (DM1).

u(v1, v2) = v1 · v2 (59)

The second utility function, shown in Eq. (60), is known
as a Leontief utility function and is commonly used in the
economic and game theoretic literature to represent the util-
ity function of rational agents [Codenotti and Varadarajan,
2007]. Here too it is clear that a decision maker needs to
take both objectives into account as their utility will be de-
rived from the minimum. We call the decision maker with
this utility function Decision Maker 2 (DM2).

u(v1, v2) = min(v1, v2) (60)

In Fig. 3 we show the expected returns of the policies
learned using DIMOQ in a sample MOMDP. Conventional
approaches in multi-objective reinforcement learning and
planning focus their attention on obtaining either the Pareto
front, indicated with a black line, or the convex hull, indi-
cated with a grey line. Therefore, only policies in these sets
would be presented to the decision makers and all remaining
policies would be discarded a priori as they are considered
suboptimal.

Let us first consider a decision support system that only
presents options with a Pareto optimal expected value to the
decision maker. In this case, the policy highlighted with a yel-
low cross on the black line in Fig. 3a is optimal for DM1 and
in Fig. 3b for DM2. These policies lead to an expected utility
of 34.87 for the former and 5.37 for the latter. Taking a distri-
butional approach, however, better policies can be retrieved.
We find that the policy in the Pareto dominated subset of the
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(a) A decision maker with Eq. (59).
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(b) A decision maker with Eq. (60).

Figure 3: A case study comparing optimal policies in the Pareto
front and distributional undominated set for two decision makers.

objective space indicated with a yellow cross is optimal for
both decision makers. Concretely, DM1 obtains an expected
utility of 49.59 from this policy while DM2 obtains a utility
of 6.49. Moreover, it is clear that this policy is strictly pre-
ferred over all policies contained in the Pareto front or convex
hull. Therefore, incorporating a distributional approach when
computing a solution set to be used in a decision support sys-
tem would significantly increase the value a decision maker
could get from using the system.
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