

ON NASH EQUILIBRIA IN MULTI-OBJECTIVE GAMES

Willem Röpke

Roxana Rădulescu

Diederik M. Roijers

Ann Nowé

OVERVIEW

- Background
- Game-theoretic work
- What's next

► Q&A

Multi-objective games present a natural framework for studying *strategic interactions between rational individuals concerned with more than one objective*.

Strategic interactions between rational individuals

Game theory

Equilibria in multi-objective games 08-08-2022 | 4

Rational individuals concerned with more than one objective

Multi-objective decision making

Equilibria in multi-objective games 08-08-2022 | 5

- Multi-Objective Normal-Form Games (MONFGs)
- Utility based approach
- ► Utility function u_i : $\mathbb{R}^d \to \mathbb{R}$

	Α	В
Α	<mark>(10, 2)</mark> ; (10, 2)	<mark>(2, 3)</mark> ; (2, 3)
B	<mark>(4, 2)</mark> ; (4, 2)	<mark>(6, 3)</mark> ; (6, 3)

$$u_1(p_1, p_2) = p_1 \cdot p_2$$

OPTIMISATION CRITERIA BACKGROUND

Two possible choices of optimisation criteria

Expected Scalarised Returns (ESR)

- Calculate the expectation of your utility from the payoffs
- Utility of an individual policy execution

Scalarised Expected Returns (SER)

- Calculate the utility of your expected payoff
- Utility of the average payoff from several executions of the policy

What happens when you take the car 50% of the time and the bike 50% of the time?

OPTIMISATION CRITERIA

What happens when you take the car 50% of the time and the bike 50% of the time?

SER = 9

Equilibria in multi-objective games 08-08-2022 | 18

Nash equilibria

No agent can improve their utility by unilatteraly deviating from the joint strategy

Equilibria in multi-objective games 08-08-2022 | 19

Nash equilibria

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

Α		В
A	<mark>(10, 2)</mark> ; (10, 2)	<mark>(0, 0)</mark> ; (0, 0)
B	<mark>(0, 0)</mark> ; (0, 0)	<mark>(2, 10)</mark> ; (2, 10)

Nash equilibria

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

, ,	D
(10, 2); (10, 2)	<mark>(0, 0)</mark> ; (0, 0)
<mark>(0, 0)</mark> ; (0, 0)	<mark>(2, 10)</mark> ; (2, 10)
•	(10, 2); (10, 2) (0, 0); (0, 0)

Nash equilibria

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

Nash equilibria

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1 \cdot p_2$$

Theoretical

- Existence or non-existence guarantees
- ► Algorithms
- Learning in these environments
 - Communication
 - Commitment

Theoretical

- Existence or non-existence guarantees
- Algorithms
- Learning in these environments
 - Communication
 - Commitment

WHAT ARE MULTI-OBJECTIVE GAMES? A NOVEL INTUITION

	Α	В	C
Α	<mark>(4, 1)</mark> ; (4, 1)	<mark>(1, 2)</mark> ; (4, 2)	<mark>(2, 1)</mark> ; (1, 2)
B	<mark>(3, 1)</mark> ; (2, 3)	<mark>(3, 2)</mark> ; (6, 3)	<mark>(1, 2)</mark> ; (2, 1)
С	<mark>(1, 2);</mark> (2, 1)	<mark>(2, 1)</mark> ; (1, 2)	<mark>(1, 3)</mark> ; (1, 3)

It turns out we can go from this

Equilibria in multi-objective games 08-08-2022 | 34

WHAT ARE MULTI-OBJECTIVE GAMES?

Every MONFG with continuous utility functions can be reduced to a continuous game

Continuous game

- Single objective
- Infinite number of pure strategies
- Reuse utility functions

	Α	В	С
Α	<mark>(4, 1)</mark> ; (4, 1)	<mark>(1, 2)</mark> ; (4, 2)	(2, 1); (1, 2)
B	<mark>(3, 1)</mark> ; (2, 3)	<mark>(3, 2)</mark> ; (6, 3)	(1, 2); (2, 1)
С	(1, 2); (2, 1)	(2, 1); (1, 2)	(1, 3); (1, 3)

	Α	В	С
Α	<mark>(4, 1)</mark> ; (4, 1)	<mark>(1, 2)</mark> ; (4, 2)	(2, 1); (1, 2)
B	<mark>(3, 1)</mark> ; (2, 3)	<mark>(3, 2)</mark> ; (6, 3)	(1, 2); (2, 1)
C	(1, 2); (2, 1)	(2, 1); (1, 2)	(1, 3); (1, 3)

	Α	В	С
Α	<mark>(4, 1)</mark> ; (4, 1)	<mark>(1, 2)</mark> ; (4, 2)	(2, 1); (1, 2)
B	<mark>(3, 1)</mark> ; (2, 3)	<mark>(3, 2)</mark> ; (6, 3)	(1, 2); (2, 1)
С	(1, 2); (2, 1)	(2, 1); (1, 2)	(1, 3); (1, 3)

	Α	В	С
Α	<mark>(4, 1)</mark> ; (4, 1)	<mark>(1, 2)</mark> ; (4, 2)	(2, 1); (1, 2)
B	<mark>(3, 1)</mark> ; (2, 3)	<mark>(3, 2)</mark> ; (6, 3)	(1, 2); (2, 1)
С	(1, 2); (2, 1)	(2, 1); (1, 2)	(1, 3); (1, 3)

WHY ARE NASH EQUILIBRIA NOT GUARANTEED? A NOVEL INTUITION

Nash equilibria are not guaranteed in MONFGs

They are guaranteed in single-objective NFGs, so why not here?

Mixed strategy equilibria in the MONFG are pure strategy equilibria in the continuous game

Continuous games are not guaranteed to have a *pure strategy* Nash equilibrium

EXISTENCE GUARANTEE

Existence is guaranteed with (quasi)concave utility functions

- Used in economics as well
- Represents "well-behaved" preferences

Intuition

- ▶ You can reduce an MONFG to a continuous game
- In this game it is known that a pure strategy Nash equilibrium exists when assuming only quasiconcave utility functions
- ▶ This equilibrium is also an equilibrium in the original MONFG

NON-EXISTENCE

We can show that no Nash equilibrium exists in this game

With strict convex utility functions

Saving grace

- Techniques we developped are generally useful
- Can use it to prove counterexamples for additional possible properties
- Can use it for an efficient algoritmh (future work)

	Α	В
Α	<mark>(2, 0)</mark> ; (1, 0)	<mark>(1, 0)</mark> ; (0, 2)
B	(0, 1); (2, 0)	<mark>(0, 2)</mark> ; (0, 1)

$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1^2 + p_2^2$$

RELATIONS BETWEEN OPTIMISATION CRITERIA MIXED STRATEGY EQUILIBRIA

No relation between both optimisation criteria **in general**

	Α	В
Α	<mark>(1, 0)</mark> ; (1, 0)	<mark>(0, 1)</mark> ; (0, 1)
В	<mark>(0, 1)</mark> ; (0, 1)	(-10, 0); (-10, 0)

Multi-objective	reward	vectors
-----------------	--------	---------

Α		В
4	<mark>0.1</mark> ; 0.1	<mark>0</mark> ; 0
B	<mark>0</mark> ; 0	- <mark>0.1</mark> ; -0.1

Scalarised utility for both agents

No sharing of number of equilibria or equilibria themselves

RELATIONS BETWEEN OPTIMISATION CRITERIA PURE STRATEGY EQUILIBRIA

Relation when only considering pure strategy equilibria

- Pure strategy equilibrium under SER is also one under ESR
- Bidirectional when assuming (quasi)convex utility functions

We can extend this to blended settings

- Pure strategy equilibrium under SER is also one in any blended setting
- Bidirectional when assuming (quasi)convex utility functions

ALGORITHMIC IMPLICATIONS

Algorithm for calculating all pure strategy equilibria in a given MONFG with quasiconvex utility functions

Shown to work because of our theoretical contributions

Equilibria in multi-objective games 08-08-2022 | 49

NASH EQUILIBRIA

RECENT WORK

Algorithm 1 Computing all PSNE in an MONFG **Input:** an MONFG $G = (N, \mathcal{A}, p)$ and quasiconvex utility functions $u = (u_1, \dots, u_n)$ 1: **function** REDUCE_MONFG(monfg, u) 2: $N, \mathcal{A}, \boldsymbol{p} \leftarrow \text{monfg}$ $u_1,\cdots,u_n \leftarrow \mathrm{u}$ 3: 4: $f \leftarrow (u_1 \circ \boldsymbol{p}_1, \cdots, u_n \circ \boldsymbol{p}_n)$ $G' \leftarrow (N, \mathcal{A}, f)$ \triangleright An induced normal-form game 5:return G'6: 7: end function 8: function COMPUTE_ALL_PSNE(nfg) 9: $S = \emptyset$ for PS in nfg do \triangleright Loop over all pure strategies 10:if PS is a PSNE then \triangleright If it is a PSNE add it to the set 11: 12: $S \leftarrow S \cup \{ PS \}$ 13:end if 14:end for 15:return S16: end function 17: nfg \leftarrow REDUCE_MONFG(G, u)18: PSNE \leftarrow COMPUTE_ALL_PSNE(nfg)

NASH EQUILIBRIA

RECENT WORK

NASH EQUILIBRIA

RECENT WORK

- ► Nash equilibrium guarantees
- ▶ Relation between optimisation criteria when only considering pure strategies
- ▶ We can extend this to blended settings

- ► Nash equilibrium guarantees
- ▶ Relation between optimisation criteria when only considering pure strategies
- ▶ We can extend this to blended settings

Incorporate everything into a novel algorithm

- ► Nash equilibrium guarantees
- ▶ Relation between optimisation criteria when only considering pure strategies
- ▶ We can extend this to blended settings

Incorporate everything into a novel algorithm

Additional guarantees for MONFGs

- Zero-sum games
- Exploit continuous game reduction

- ▶ Nash equilibrium guarantees
- ▶ Relation between optimisation criteria when only considering pure strategies
- ▶ We can extend this to blended settings

Incorporate everything into a novel algorithm

Additional guarantees for MONFGs

- Zero-sum games
- Exploit continuous game reduction

More algorithmic work

Use theorems to find Nash equilibria efficiently

Explored communication

- Communication protocols
- Commit to actions or policies
- Evaluate in different settings

Explored commitment

- ► Theoretically
- Evaluate using reinforcement learning

